scholarly journals Switch Open-Fault Detection for a Three-Phase Hybrid Active Neutral-Point-Clamped Rectifier

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1437
Author(s):  
Sang-Hun Kim ◽  
Seok-Min Kim ◽  
Sungmin Park ◽  
Kyo-Beum Lee

This paper proposes a fault-detection method for open-switch failures in hybrid active neutral-point-clamped (HANPC) rectifiers. The basic HANPC topology comprises two SiC-based metal-oxide-semiconductor field-effect transistors (MOSFETs) and four Si insulated-gate bipolar transistors (IGBTs). A three-phase rectifier system using the HANPC topology can produce higher efficiency and lower current harmonics. An open-switch fault in a HANPC rectifier can be a MOSFET or IGBT fault. In this work, faulty cases of six different switches are analyzed based on the current distortion in the stationary reference frame. Open faults in MOSFET switches cause immediate and remarkable current distortions, whereas, open faults in IGBT switches are difficult to detect using conventional methods. To detect an IGBT fault, the proposed detection method utilizes some of the reactive power in a certain period to make an important difference, using the direct-quadrant (dq)-axis current information derived from the three-phase current. Thus, the proposed detection method is based on three-phase current measurements and does not use additional hardware. By analyzing the individual characteristics of each switch failure, the failed switch can be located exactly. The effectiveness and feasibility of the proposed fault-detection method are verified through PSIM simulations and experimental results.

2020 ◽  
Vol 10 (14) ◽  
pp. 4965
Author(s):  
Yordanos Dametw Mamuya ◽  
Yih-Der Lee ◽  
Jing-Wen Shen ◽  
Md Shafiullah ◽  
Cheng-Chien Kuo

Fault location with the highest possible accuracy has a significant role in expediting the restoration process, after being exposed to any kind of fault in power distribution grids. This paper provides fault detection, classification, and location methods using machine learning tools and advanced signal processing for a radial distribution grid. The three-phase current signals, one cycle before and one cycle after the inception of the fault are measured at the sending end of the grid. A discrete wavelet transform (DWT) is employed to extract useful features from the three-phase current signal. Standard statistical techniques are then applied onto DWT coefficients to extract the useful features. Among many features, mean, standard deviation (SD), energy, skewness, kurtosis, and entropy are evaluated and fed into the artificial neural network (ANN), Multilayer perceptron (MLP), and extreme learning machine (ELM), to identify the fault type and its location. During the training process, all types of faults with variations in the loading and fault resistance are considered. The performance of the proposed fault locating methods is evaluated in terms of root mean absolute percentage error (MAPE), root mean squared error (RMSE), Willmott’s index of agreement (WIA), coefficient of determination ( R 2 ), and Nash-Sutcliffe model efficiency coefficient (NSEC). The time it takes for training and testing are also considered. The proposed method that discrete wavelet transforms with machine learning is a very accurate and reliable method for fault classifying and locating in both a balanced and unbalanced radial system. 100% fault detection accuracy is achieved for all types of faults. Except for the slight confusion of three line to ground (3LG) and three line (3L) faults, 100% classification accuracy is also achieved. The performance measures show that both MLP and ELM are very accurate and comparative in locating faults. The method can be further applied for meshed networks with multiple distributed generators. Renewable generations in the form of distributed generation units can also be studied.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 399 ◽  
Author(s):  
Bong Hyun Kwon ◽  
Sang-Hun Kim ◽  
Seok-Min Kim ◽  
Kyo-Beum Lee

A diagnostic method for an open-circuit switch failure in a hybrid active neutral-point clamped (HANPC) inverter is proposed in this paper. The switching leg of the HANPC inverter consists of four silicon insulated gate bipolar transistors and two silicon carbide metal-oxide-semiconductor field-effect transistors to achieve higher efficiency and power density compared to conventional neutral-point clamped inverters. When an open-circuit failure occurs in a switching device, the output current is severely distorted, causing damage to the inverter and the connected loads. The proposed diagnostic method aims to detect the open-switch failure and protect the related devices without additional sensors or circuits. The faulty conditions of six different switches are investigated based on the current distortion in the stationary reference frame. By analyzing the individual characteristic of each switch failure, it is possible to detect the exact location of the failed switch in a short period. The effectiveness and feasibility of the proposed fault-diagnostic method are verified using simulation and experimental results.


Author(s):  
Bilal Boudjellal ◽  
Tarak Benslimane

This paper presents the study of an open switch fault tolerant control of a grid-connected photovoltaic system. The studied system is based on the classical DC–DC boost converter and a bidirectional 6-pulse DC–AC converter. The objective is to provide an open-switch fault detection method and fault-tolerant control for both of boost converter and grid-side converter (GSC) in a grid-connected photovoltaic system. A fast fault detection method and a reliable fault-tolerant topology are required to ensure continuity of service, and achieve a faster corrective maintenance. In this work, the mean value of the error voltages is used as fault indicator for the GSC, while, for the boost converter the inductor current form is used as fault indicator. The fault-tolerant topology was achieved by adding one redundant switch to the boost converter, and by adding one redundant leg to the GSC. The results of the fault tolerant control are presented and discussed to validate the proposed approach under different scenarios and different solar irradiances.


Author(s):  
A Divya Teja and Dr. N Sambasiva Rao

The use of power electronic converters influences the generation of harmonics and reactive power flow in power system. Therefore, three-phase multilevel improved power quality AC-DC converters are gaining lot of popularity in power conversion applications. This work deals with critical problem of multilevel structure i.e neutral point potential (NPP) variation. In this paper, a simplified current controlled scheme is presented to ensure unity power factor operation. Neutral point potential (NPP) of three-phase, 3-level NPC AC-DC converter is controlled by modifying control signal in the controller using NPP regulator. An auxiliary circuit is being presented in this paper as an alternative option for controlling the neutral point potential of the converter. Comparison has been carried out between these control techniques in terms of power quality. A complete mathematical model is presented for better understanding of both techniques used for NPP control. The presented control techniques has been verified through simulation investigations and validated


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8427
Author(s):  
Dawid Buła ◽  
Grzegorz Jarek ◽  
Jarosław Michalak ◽  
Marcin Zygmanowski

An active power filter based on a three-level neutral point clamped T-type converter with LCL input filter is presented in the paper. The main goal of the paper is the analysis of a control system that ensures independent control of a current in each phase. The presented control method of the filter allows reactive power compensation and/or a higher harmonics reduction to be achieved in each phase independently, with the possibility of control tan (φ) coefficient. This allows the power flow between the phases to be minimalized and reduces the RMS values of filter currents without the need to balance grid currents. The analysis presents the possibility of an operation in different modes, which was verified by experimental results. The results have been obtained in a 20 ARMS laboratory system described in the paper. The results reveal relatively low power losses, which are a feature of the selected three-level T-type topology. Additionally, that topology, when compared to a two-level one, ensures the reduction in current ripples with the same parameters of passive components.


Sign in / Sign up

Export Citation Format

Share Document