Power Supply Platform and Functional Safety Concept Proposals for a Powertrain Transmission Electronic Control Unit
In the last decade, modern vehicles have become very complex, being equipped with embedded electronic systems which include more than a thousand of electronic control units (ECUs). Therefore, it is mandatory to analyze the potential risk of automotive systems failure because it could have a significant impact on humans’ safety. This paper proposes a novel, functional safety concept at the power management level of a system basis chip (SBC), from the development phase to system design. In the presented case, the safety-critical application is represented by a powertrain transmission electronic control unit. A step-by-step design guideline procedure is presented, having as a focus the cost, safety, and performance to obtain a robust, cost-efficient, safe, and reliable design. To prove compliance with the ISO 26262 standard, quantitative worst-case evaluations of the hardware have been done. The assessment results qualify the proposed design with automotive safety integrity levels (ASIL, up to ASIL-D). The main contribution of this paper is to demonstrate how to apply the functional safety concept to a real, safety-critical system by following the proposed design methodology.