scholarly journals Modeling and Recipe Optimization of Anti-Glare Process Using Sandblasting for Electronic Display Glass

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2048
Author(s):  
Chul Hong Min ◽  
Yoon Sung Kang ◽  
Tae Seon Kim

Recently, anti-glare (AG) surface treatment technology has been considered as a standard process to enhance the visibility of electronic display devices. For AG, the hydrofluoric acid (HF)-based chemical etch method is the most common approach for the current display glass industry. However, in order to overcome the environmental and durability degradation problems of the HF-based chemical etch method, this paper proposes an eco-friendly physical surface treatment technology using the sandblasting method. Based on the preliminary analysis results using the central composite design (CCD) method-based response surface modeling methodology (RSM), additional experiments and analyses were performed for process modeling and optimal process recipe generation. To characterize the sandblasting process, the mean value of haze was considered as the process output, and the pressure of the nozzle, the distance of the nozzle from the surface of glass, the glass feed rate, and the grit size of the abrasives were considered as process inputs. Based on the process model using the statistical response surface regression method and machine learning-based approaches, the proposed method can generate optimized process recipes for various haze targets of 10%, 20%, and 30%, with an average haze difference of 0.84%, 0.02%, and 0.86%, and maximum deviations of 1.26%, 1.14%, and 1.4%, respectively. Through the successful completion of this work, it is expected that the proposed surface treatment method can be applied to various products including mobile phones, tablet PCs, and windshields of vehicles.

Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 358
Author(s):  
Javier Aragoneses ◽  
Ana Suárez ◽  
Nansi López-Valverde ◽  
Francisco Martínez-Martínez ◽  
Juan Manuel Aragoneses

The aim of this study was to evaluate the effect of implant surface treatment with carboxyethylphosphonic acid and fibroblast growth factor 2 on the bone–implant interface during the osseointegration period in vivo using an animal model. The present research was carried out in six minipigs, in whose left tibia implants were inserted as follows: eight implants with a standard surface treatment, for the control group, and eight implants with a surface treatment of carboxyethylphosphonic acid and immobilization of FGF-2, for the test group. At 4 weeks after the insertion of the implants, the animals were sacrificed for the histomorphometric analysis of the samples. The means of the results for the implant–bone contact variable (BIC) were 46.39 ± 17.49% for the test group and 34.00 ± 9.92% for the control group; the difference was not statistically significant. For the corrected implant–bone contact variable (BICc), the mean value of the test group was 60.48 ± 18.11%, and that for the control group, 43.08 ± 10.77%; the difference was statistically significant (p-value = 0.035). The new bone formation (BV/TV) showed average results of 27.28 ± 3.88% for the test group and 26.63 ± 7.90% for the control group, meaning that the differences were not statistically significant (p-value = 0.839). Regarding the bone density at the interthread level (BAI/TA), the mean value of the test group was 32.27 ± 6.70%, and that of the control group was 32.91 ± 7.76%, with a p-value of 0.863, while for the peri-implant density (BAP/TA), the mean value of the test group was 44.96 ± 7.55%, and that for the control group was 44.80 ± 8.68%, without a significant difference between the groups. The current research only found a significant difference for the bone–implant contact at the cortical level; therefore, it could be considered that FGF-2 acts on the mineralization of bone tissue. The application of carboxyethylphosphonic acid on the surface of implants can be considered a promising alternative as a biomimetic coating for the immobilization of FGF-2. Despite no differences in the new bone formation around the implants or in the interthread or peri-implant bone density being detected, the biofunctionalization of the implant surface with FGF-2 accelerates the mineralization of the bone–implant interface at the cortical level, thereby reducing the osseointegration period.


2018 ◽  
Vol 6 (3) ◽  
pp. 568-573 ◽  
Author(s):  
Emilija Barjaktarova-Valjakova ◽  
Anita Grozdanov ◽  
Ljuben Guguvcevski ◽  
Vesna Korunoska-Stevkovska ◽  
Biljana Kapusevska ◽  
...  

AIM: The purpose of this review is to represent acids that can be used as surface etchant before adhesive luting of ceramic restorations, placement of orthodontic brackets or repair of chipped porcelain restorations. Chemical reactions, application protocol, and etching effect are presented as well.STUDY SELECTION: Available scientific articles published in PubMed and Scopus literature databases, scientific reports and manufacturers' instructions and product information from internet websites, written in English, using following search terms: “acid etching, ceramic surface treatment, hydrofluoric acid, acidulated phosphate fluoride, ammonium hydrogen bifluoride”, have been reviewed.RESULTS: There are several acids with fluoride ion in their composition that can be used as ceramic surface etchants. The etching effect depends on the acid type and its concentration, etching time, as well as ceramic type. The most effective etching pattern is achieved when using hydrofluoric acid; the numerous micropores and channels of different sizes, honeycomb-like appearance, extruded crystals or scattered irregular ceramic particles, depending on the ceramic type, have been detected on the etched surfaces.CONCLUSION: Acid etching of the bonding surface of glass - ceramic restorations is considered as the most effective treatment method that provides a reliable bond with composite cement. Selective removing of the glassy matrix of silicate ceramics results in a micromorphological three-dimensional porous surface that allows micromechanical interlocking of the luting composite.


2015 ◽  
Vol 60 (2) ◽  
pp. 1031-1035 ◽  
Author(s):  
J. Smolik ◽  
A. Mazurkiewicz ◽  
J. Kacprzyńska-Gołacka ◽  
M. Rydzewski ◽  
M. Szota ◽  
...  

Abstract Magnesium alloys have very interesting physical properties which make them ‘materials of the future’ for tools and machine components in many industry areas. However, very low corrosion and tribological resistance of magnesium alloys hampers the implementation of this material in the industry. One of the methods to improve the properties of magnesium alloys is the application of the solutions of surface engineering like hybrid technologies. In this paper, the authors compare the tribological and corrosion properties of two types of “MgAlitermetalic / PVD coating” composite layers obtained by two different hybrid surface treatment technologies. In the first configuration, the “MgAlitermetalic / PVD coating” composite layer was obtained by multisource hybrid surface treatment technology combining magnetron sputtering (MS), arc evaporation (AE) and vacuum heating methods. The second type of a composite layer was prepared using a hybrid technology combined with a diffusion treatment process in Al-powder and the electron beam evaporation (EB) method. The authors conclude, that even though the application of „MgAlitermetalic / PVD coating” composite layers can be an effective solution to increase the abrasive wear resistance of magnesium alloys, it is not a good solution to increase its corrosion resistance.


2020 ◽  
Vol 42 (10) ◽  
pp. 463-471
Author(s):  
Chul-Hwan Kim ◽  
Kwanyoung Ko ◽  
Jongkeun Lee ◽  
Haegeun Chung

Objectives : Black soldier fly larvae (BSFL) are organisms that effectively decompose various types of organic waste including food waste, and food waste treatment using BSFL is attracting attention as a sustainable waste treatment method. However, food waste discharged from Korea has a wide variety of properties, and its high salt concentration limits its treatment by BSFL. Therefore, to increase the efficiency of food waste treatment using BSFL, it is necessary to increase the quality of food waste as a production medium for BSFL. In this study, the ratio of protein and fat was adjusted by adding bean sprouts and wheat brans to food wastes treated at high temperature under vacuum, and whether such medium is suitable for rearing BSFL was investigated.Methods : To improve the medium, the ratio of protein and fat was adjusted to approximately 2:1 by adding bean sprouts and bran residue to food waste. Subsequently, the growth and development rate of BSFL reared on chicken feed, food waste, food waste + bean sprouts, food waste + wheat bran were measured. Also, the decomposition rate of each medium was analyzed.Results and Discussion : The growth rate of BSFL grown on food waste + wheat bran medium was similar to that of BSFL reared on chicken feed. The speed of development at day 7 was also the fastest for BSFL reared with food waste + wheat bran medium and chicken feed. These results suggest that the mixed medium to which wheat bran has been added to food waste has the potential to be used as a commercial medium for BSFL production. The survival rate of BSFL was 89% or higher in all media.Conclusions : When food waste was used alone, BSFL development was poor compared to that in media combined with agricultural by-products such as bean sprouts and wheat bran. Therefore, to use food waste as a rearing medium of BSFL, it is necessary to adjust the ratio of protein and fat by adding various agricultural by-products and reduce salinity. For the improvement of food waste treatment technology using BSFL, mass rearing of useful insects such as BSFL, and promotion of the use of agricultural by-products, additional research is needed to optimize the composition of rearing medium based on food waste.


Stainless steel is used widespread in various industries, but it has poor wear resistance. Therefore, this study aims to investigate the wear resistance of enhanced surface of 316L stainless steel by applying the combination of surface treatments that consist of shot blasting followed by paste boronizing. Glass beads with diameter 250 microns and the blasting pressure of 6 bar has been used as the shot material in conducting shot blasting process. Paste boronizing process was conducted at temperature 950°C for 8 hours soaking. Data were collected and analyzed which concentrating on the samples’ microstructure, microhardness and wear evaluation. Shot blasting improves the case depth of boride layers formed after performing paste boronizing by boosting the boron diffusion owing to the grain refinement created by shot blasting. The ultimate combination of shot blasting and paste boronizing parameters enhance the case depth of the smooth and compact boride layers with high boron content. The hardness performance increase 624% compared to untreated 316L stainless steel which also highly improve the wear resistance of the material. In this investigation, these dual processes of surface treatment which are shot blasting and paste boronizing can be applied in fabricating the improved 316L stainless steel for industrial usages.


2021 ◽  
Vol MA2021-03 (1) ◽  
pp. 249-249
Author(s):  
Xiaolei Ye ◽  
Huan Luo ◽  
Pierre Bertrand ◽  
Alain Billard ◽  
Pascal Briois

2021 ◽  
Vol 0 (2) ◽  
pp. 2-6
Author(s):  
V. A. Nelyub ◽  
◽  
I. A. Komarov ◽  

The effect of pretreatment technologies of carbon fibers by different electromagnetic methods on their mechanical characteristics has been examined. The methods of cold plasma and ultraviolet radiation were used. Such a treatment improves adhesion strength of a metal coating with fibers for production of carbon-filled plastics with high interfacial shear durability. By experiments it has been found out that the plasma treatment method is the most effective. The study and experiment results are presented.


Sign in / Sign up

Export Citation Format

Share Document