scholarly journals Task-Level Aware Scheduling of Energy-Constrained Applications on Heterogeneous Multi-Core System

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2077
Author(s):  
Kai Huang ◽  
Ming Jing ◽  
Xiaowen Jiang ◽  
Siheng Chen ◽  
Xiaobo Li ◽  
...  

Minimizing the schedule length of parallel applications, which run on a heterogeneous multi-core system and are subject to energy consumption constraints, has recently attracted much attention. The key point of this problem is the strategy to pre-allocate the energy consumption of unscheduled tasks. Previous articles used the minimum value, average value or a power consumption weight value as the pre-allocation energy consumption of tasks. However, they all ignored the different levels of tasks. The tasks in different task levels have different impact on the overall schedule length when they are allocated the same energy consumption. Considering the task levels, we designed a novel task energy consumption pre-allocation strategy that is conducive to minimizing the scheduling time and developed a novel task schedule algorithm based on it. After getting the preliminary scheduling results, we also proposed a task execution frequency re-adjustment mechanism that can re-adjust the execution frequency of tasks, to further reduce the overall schedule length. We carried out a considerable number of experiments with practical parallel application models. The results of the experiments show that our method can reach better performance compared with the existing algorithms.

2019 ◽  
Vol 28 (11) ◽  
pp. 1950190 ◽  
Author(s):  
Jinghong Li ◽  
Guoqi Xie ◽  
Keqin Li ◽  
Zhuo Tang

Energy consumption has always been one of the main design problems in heterogeneous distributed systems, whether for large cluster computer systems or small handheld terminal devices. And as energy consumption explodes for complex performance, many efforts and work are focused on minimizing the schedule length of parallel applications that meet the energy consumption constraints currently. In prior studies, a pre-allocation method based on dynamic voltage and frequency scaling (DVFS) technology allocates unassigned tasks with minimal energy consumption. However, this approach does not necessarily result in minimal scheduling length. In this paper, we propose an enhanced scheduling algorithm, which allocates the same energy consumption for each task by selecting a relatively intermediate value among the unequal allocations. Based on the two real-world applications (Fast Fourier transform and Gaussian elimination) and the randomly generated parallel application, experiments show that the proposed algorithm not only achieves better scheduling length while meeting the energy consumption constraints, but also has better performance than the existing parallel algorithms.


2016 ◽  
Author(s):  
Dieison Solveira ◽  
Gabriel Moro ◽  
Eduardo De Cruz ◽  
Philipe Navaux ◽  
Lucas Schnorr ◽  
...  

This paper presents a detailed energy consumption analysis, considering the energy consumption related to CPU, cache memory and main memory of parallel applications on HPC systems. Furthermore, this paper also presents the correlation between energy consumption, Speedup, and execution time. Experiments are conducted with the NAS parallel benchmarks using three different measurement tools: 1) Intel PCM, 2) Perf Linux, and 3) HP CACTI. The results show a comparison between two approaches to obtain energy consumption results. One using PCM and other using Perf and CACTI. The DRAM results show an average variation between these approaches of 47% for sequential applications, and 19% for parallel applications. The system results show that the lowest energy consumption occurs only when all physical cores are used, showing that the hyper-threading system did not bring benefits in energy consumption to the system. Moreover, the cache memories results show that the cache miss rate (regardless of the level) increases with the number of threads. However, a parallel application has lower cache memory energy consumption when compared to its sequential version.


2001 ◽  
Vol 02 (03) ◽  
pp. 331-343
Author(s):  
CHRISTOPHER MCAVANEY ◽  
ANDRZEJ GOSCINSKI

Parallel execution is a very efficient means of processing vast amounts of data in a small amount of time. Creating parallel applications has never been easy, and requires much knowledge of the task and the execution environment used to execute parallel processes. The process of creating parallel applications can be made easier through using a compiler that automatically parallelises a supplied application. Executing the parallel application is also simplified when a well designed execution environment is used. Such an execution environment provides very powerful operations to the programmer transparently. Combining both a parallelising compiler and execution environment and providing a fully automated parallelisation and execution tool is the aim of this research. The advantage of using such a fully automated tool is that the user does not need to provide any additional input to gain the benefits of parallel execution. This report shows the tool and how it transparently supports the programmer creating parallel applications and supports their execution.


2021 ◽  
Vol 13 (23) ◽  
pp. 13457
Author(s):  
Hala Aburas ◽  
Isam Shahrour

This paper analyzes the mobility restrictions in the Palestinian territory on the population and the environment. The literature review shows a scientific concern for this issue, with an emphasis on describing mobility barriers and the severe conditions experienced by the population due to these barriers as well as the impact of mobility restrictions on employment opportunities. On the other hand, the literature review also shows a deficit in quantitative analysis of the effects of mobility restrictions on the environment, particularly on energy consumption and greenhouse gas emissions. This paper aims to fill this gap through a quantitative analysis by including data collection about mobility restrictions, using network analysis to determine the impact of these restrictions on inter-urban mobility, and analysis of the resulting energy consumption and CO2 emissions. The results show that mobility restrictions induce a general increase in energy consumption and CO2 emissions. The average value of this increase is about 358% for diesel vehicles and 275% for gasoline vehicles.


Author(s):  
Amila Thibbotuwawa ◽  
Peter Nielsen ◽  
Grzegorz Bocewicz ◽  
Zbigniew Banaszak

Sign in / Sign up

Export Citation Format

Share Document