scholarly journals Experimental Study on Splitter Plate for Improving the Dielectric Recovery Strength of Low-Voltage Circuit Breaker

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2148
Author(s):  
Young-Maan Cho ◽  
Kun-A Lee

The low-voltage circuit breakers are widely used to protect loads in the distribution system. Interruption reliability of circuit breakers is important because they are a protective device close to the customer. In particular, the re-ignition phenomenon leads to over-current blocking failure due to the arc re-formed between electrodes despite the normal trip of the circuit breaker. In this paper, in order to improve the interruption performance against re-ignition, the dielectric recovery voltage measurement system of the circuit breaker is used and the experiment of changing the splitter plate is carried out. Two experiments are carried out by changing the splitter plate, especially changing the material of splitter plate and the number of lower plates of the splitter plate. In the case of changing the material of the splitter plate, the analysis is conducted according to the thermal conductance. In the case of changing the number of lower plates of the splitter plate, the number of plates and their spacing are variables. Analyzing the results of the dielectric recovery voltage experiment, in the initial period, copper plates have the best value that shows 102.1% improvement compared to normal and Al shows 59.8% improvement compared to normal. These increases are related to the thermal conductivity of the three electrode materials. In the case of changing the number of lower plates of the splitter plate, the 8-plates and 9-plates show 84.5% and 36.1% increases compared to normal, respectively, in the initial period. It can be seen that too many plates interfere with heat dissipation. Since this study studies performance improvement during the initial period, there is not much difference in the later period. This is consistent with the experimental results. In this study, an experimental basis is provided for the dielectric recovery strength from a low-voltage circuit breaker. It is expected that this will contribute to the research to improve the dielectric recovery capability of the circuit breaker.

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6838
Author(s):  
Hyosung Kim

With the present state of the direct current (DC) distribution market, securing the safety of the DC distribution system is emerging as a major issue. Like AC distribution systems, DC switches and circuit breakers are one of the main means to ensure safety. However, in the DC system, since there is no current zero point in the load current, the phenomenon occurring when the circuit is cut off is different from that of the AC system, so technical research is required to cope with this. In this study, the aging characteristics of the contact electrode of a 400 V class low voltage DC (LVDC) switch is studied for the development of wall-mount switches or circuit breakers for residential houses. As an arc extinguishing method to break DC load current, a prototype experimental circuit breaker that uses a magnetic extinguishing method that is effective for blocking low voltage low power DC is invented, and an automated experiment system is established. The DC switch test repeats the operation of turning it on and off 13,000 times, and continuously evaluates the performance of the electric contacts by calculating the voltage drop between the electrode contacts and the corresponding Ohmic resistance value when conducting every 500 times. This paper tests six contact materials to compare the aging characteristics of them by evaluating contact resistance during the test period. AW18-Cu composite material showed the most stable and excellent contact performance for LVDC switches during the entire test operation period.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 338
Author(s):  
Leslie Tracy ◽  
Praveen Kumar Sekhar

In this study, a low voltage solid-state circuit breaker (SSCB) was implemented for a DC distribution system using commercially available components. The design process of the high-side static switch was enabled through a voltage bias. Detailed functional testing of the current sensor, high-side switch, thermal ratings, analog to digital conversion (ADC) techniques, and response times of the SSCB was evaluated. The designed SSCB was capable of low-end lighting protection applications and tested at 50 V. A 15 A continuous current rating was obtained, and the minimum response time of the SSCB was nearly 290 times faster than that of conventional AC protection methods. The SSCB was implemented to fill the gap where traditional AC protection schemes have failed. DC distribution systems are capable of extreme faults that can destroy sensitive power electronic equipment. However, continued research and development of the SSCB is helping to revolutionize the power industry and change the current power distribution methods to better utilize clean renewable energy systems.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3217
Author(s):  
Yun Geng ◽  
Xiaofei Yao ◽  
Jinlong Dong ◽  
Xue Liu ◽  
Yingsan Geng ◽  
...  

The prestrike phenomenon in vacuum circuit breakers (VCBs) is interesting but complicated. Previous studies mainly focus on the prestrike phenomenon in single-break VCBs. However, experimental work on prestrike characteristics of double-break VCBs cannot be found in literature. This paper aims to experimentally determine the probabilistic characteristics of prestrike gaps in a double-break VCB consisting of two commercial vacuum interrupters (VIs) in series under direct current (DC) voltages. As a benchmark, single-break prestrike gaps were measured by short-circuiting one of the VIs in a double break. The experimental results show that the 50% prestrike gap d50 of each VI in a double break, which is calculated with the complementary Weibull distribution, was significantly reduced by 25% to 72.7% compared with that in a single break. Due to the voltage-sharing effect in the double-break VCB, scatters in prestrike gaps of each VI in a double break was smaller than that in a single break. However, without the sharing-voltage effect, d50 of the low-voltage side in the double break was 65% higher than that of the same VI in the single break, which could be caused by the asynchronous property of mechanical actuators, the difference of the inherent prestrike characteristics of each VI and the unequal voltage-sharing ratio of VIs.


2021 ◽  
Vol 2117 (1) ◽  
pp. 012021
Author(s):  
R I Sudjoko ◽  
Hartono ◽  
Suhanto ◽  
Kustori ◽  
S Hariyadi ◽  
...  

Abstract A circuit breaker is the main part of the distribution panel that needs to control for safe operation. It is important for protection and switching in the power system. Automatic control of circuit breakers using motorized can be realized by the microcontroller scheme. In this paper, a microcontroller equipped with wifi and an internet connection is used to control and monitoring the circuit breaker. The design of the circuit is proposed and experiment result is obtained. The response time is about 1 second to complete the process to control the circuit breaker. Error in monitoring application is about 3% for voltage measurement and 3.5% for current measurement. The proposed circuit system showed good and reliable control and monitoring of circuit breakers in every condition include of closing, opening, and monitoring.


Author(s):  
Adrian Plesca ◽  
Alina Scintee

Busbar technology is more and more used to realize connections within power supply systems in answer to the need of compactness. The integrated problem on heat conduction and radiation-convective heat exchange describes the temperature regime in current conductors and current carrying busbars of power electrical apparatus such as circuit breakers or high breaking capacity fuses. Beside steady-state conditions, the transient thermal regime of busbar has an important influence upon whole power supply system from thermal behaviour point of view. Hence, a 3D thermal analysis of a power system including fuse, low voltage circuit breaker and busbars connections, using a specific software package based on Finite Element Method, has been done. From 3D thermal modelling and simulations, the thermal transient impedance for the busbar has been computed. This allows a better correlation between protection characteristics of the fuse and circuit breaker and busbar design.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3167
Author(s):  
Nils H. van der Blij ◽  
Pavel Purgat ◽  
Thiago B. Soeiro ◽  
Laura M. Ramirez-Elizondo ◽  
Matthijs T. J. Spaan ◽  
...  

Since the voltages and currents in dc grids do not have a natural zero-crossing, the protection of these grids is more challenging than the protection of conventional ac grids. Literature presents several unit and non-unit protection schemes that rely on communication, or knowledge about the system’s topology and parameters in order to achieve selective protection in these grids. However, communication complicates fast fault detection and interruption, and a system’s parameters are subject to uncertainty and change. This paper demonstrates that, in low voltage dc grids, faults propagate fast through the grid and interrupted inductive currents commutate to non-faulted sections of the grid, which both can cause circuit breakers in non-faulted sections to trip. A decentralized plug-and-play protection scheme is proposed that ensures selectivity via an augmented solid-state circuit breaker topology and by utilizing the proposed time-current characteristic. It is experimentally shown that the proposed scheme provides secure and selective fault interruption for radial and meshed low voltage dc grids under various conditions.


2011 ◽  
Vol 383-390 ◽  
pp. 2287-2292
Author(s):  
Yong Yuan Wang ◽  
Sheng Hui Liu ◽  
Wen Ze Liu ◽  
Ke Ying Wang

The shunt power capacitors are used as a reactive compensator while vacuum circuit breakers are used to switch shunt capacitors in power grid. To research the high over-voltage during switching off the shunt capacitors and a vacuum circuit beaker restriked, the restriking model is built with three-phase vacuum circuit breakers, considering the capacitors’ energy storage characteristic and asynchronous operating. The over-voltage is harmful to the insulation and life-circle of the equipments and even threatens power system safe and stabile operation. The variation trends of both recovery voltage between the contacts and the capacitors voltage are theoretically deduced. The model based on a 220kV substation of Guangdong grid was built and the most serious case that breakers are restriked in two phases are numbered with EMTP. Compared with theoretical results, simulation results are valid and practical.


2015 ◽  
Vol 781 ◽  
pp. 333-336
Author(s):  
Ratana Kem ◽  
Warunee Srisongkram ◽  
Phanupong Fuangpian ◽  
Thanapong Suwanasri

This paper presents electrical stress analysis from capacitor bank switching in a 115 kV substation. The actual data of all equipment in substation are used in the simulated circuit by using ATP/EMTP program. The cases study focused on the determination of proper value of series reactor, effect of circuit breaker pole discrepancy on inrush current, line model selection and load variation. Electrical stress from energizing inrush current as well as transient recovery voltage and rate of rise of recovery voltage imposed on power circuit breaker during capacitor bank has been analyzed. The obtained results are used as guidelines for analysis of the electric stresses on substation equipment while capacitor banks are energized. Moreover, those results can be used to select the proper rating of circuit breakers to withstand the electric stresses in the transmission network.


2020 ◽  
Vol 1 (3) ◽  
pp. 8-16
Author(s):  
Oshin Ola Austin ◽  
Oluwasanmi Alonge ◽  
Ajayi Joseph Adeniyi

In any power systems, protective devices will detect fault conditions and operate circuit breakers in order to disconnect the load from the fault current and limit loss of service due to failure. This fault may involve one or more phases and the ground, or may occur between two or more phases in a three-phase systems. In ground, fault’ or ‘earth fault, current flows into the earth. In a poly-phase system, a fault may affect each of the three phases equally which is a symmetrical fault. If only some phases are affected, the resulting ‘asymmetrical fault’ becomes more complicated to analyze due to the simplifying assumption of equal current magnitude in all the phases being no longer applicable. Therefore, the prospective short circuit current of the fault can be calculated for power systems analysis procedures. This will assist in the choice of protective devices like circuit breakers, current transformers and relays. This research work evaluated and analyzed the occurrence of faults in a distribution system. Fault currents were obtained and the maximum tripping time required for the protective devices to operate were determined. Hence, it was possible to select appropriate relay and circuit breaker for effective operation of a distribution


2010 ◽  
Vol 43 (43) ◽  
pp. 434011 ◽  
Author(s):  
Fei Yang ◽  
Mingzhe Rong ◽  
Yi Wu ◽  
Anthony B Murphy ◽  
Jun Pei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document