scholarly journals Comparison of the Location and Rating of Energy Storage for Renewables Integration in Residential Low Voltage Networks with Overvoltage Constraints

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2041 ◽  
Author(s):  
Andrew F. Crossland ◽  
Darren Jones ◽  
Neal S. Wade ◽  
Sara L. Walker

Expansion of photovoltaic (PV) generation is increasing the challenge for network operators to keep voltages within operational limits. Voltage rise occurs in low voltage (LV) networks when distributed generators export, particularly at times of low demand. However, there is little work quantifying the scale of voltage issues and subsequently potential solutions across large numbers of real networks. In this paper, a method is presented to analyse a large quantity of geographically and topographically varying distribution networks. The impact of PV on voltages in 9163 real LV distribution networks is then quantified. One potential mitigation measure is increased network demand to reduce voltages. In this work, location algorithms are used to identify where increased demand, through energy storage, has the greatest effect on overvoltage. The study explores the impact on overvoltage of two modes of storage installation reflecting differing routes to adoption: purchase of storage by homeowners and purchase by network operators. These scenarios are compared with traditional re-conductoring in the 9163 networks. It is shown that to avoid violation of absolute voltage limits, storage should be installed at strategically important locations. Storage in homes reduces overvoltage, offering clear benefits to the network operator, but very wide deployment is required to completely remove the need for reinforcement.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1121
Author(s):  
Rozmysław Mieński ◽  
Przemysław Urbanek ◽  
Irena Wasiak

The paper includes the analysis of the operation of low-voltage prosumer installation consisting of receivers and electricity sources and equipped with a 3-phase energy storage system. The aim of the storage application is the management of active power within the installation to decrease the total power exchanged with the supplying network and thus reduce energy costs borne by the prosumer. A solution for the effective implementation of the storage system is presented. Apart from the active power management performed according to the prosumer’s needs, the storage inverter provides the ancillary service of voltage regulation in the network according to the requirements of the network operator. A control strategy involving algorithms for voltage regulation without prejudice to the prosumer’s interest is described in the paper. Reactive power is used first as a control signal and if the required voltage effect cannot be reached, then the active power in the controlled phase is additionally changed and the Energy Storage System (ESS) loading is redistributed in phases in such a way that the total active power set by the prosumer program remains unchanged. The efficiency of the control strategy was tested by means of a simulation model in the PSCAD/EMTDC program. The results of the simulations are presented.


2016 ◽  
Vol 78 (10-4) ◽  
Author(s):  
Amirullah Amirullah ◽  
Mochamad Ashari ◽  
Ontoseno Penangsan ◽  
Adi Soeprijanto

Randomly installed distributed generators (DGs) in households may cause unbalanced line current in a distribution network. This research presents a battery energy system for balancing of line current in a distribution network involving multi units of single phase photovoltaic (PV) distributed generators (DGs). In this paper, the PV generators were simulated consisting of a buck-boost DC/DC converter and single phase DC/AC inverter. It was connected to the distribution line through the low voltage 220 volt 50 Hz. The proposed phase balancing system uses battery energy storage and three single phase bidirectional inverters. The inverter is capable of injecting current or absorbing power from the line to the battery. This inverter operation is arranged to balance each distribution line separately, as well as to improve other power quality parameters, such as voltage and current harmonics. Simulation results show that the system was capable of improving the unbalanced line current from 15.59 % to 11, 48 % and unbalanced line voltage from 1.76 % to 0.58 %. The system was able for increasing current harmonics from 0.98 % to 1.03% and voltage harmonics from 38.96% to 39.08%.


2018 ◽  
Vol 225 ◽  
pp. 04024 ◽  
Author(s):  
Abid Ali Jamali ◽  
Nursyarizal Mohd Nor ◽  
Taib Ibrahim ◽  
Mohd Fakhizan Romlie ◽  
Zahid Khan

This paper evaluates the potential of Quaid-e-Azam Solar Park (QASP), Pakistan and examines its impact on distribution networks. To estimate the PV plant yields, solar park’s historical hourly weather data from the years 2000 - 2014 is used. For handling of such huge data, the yearly data is partitioned into four seasons. Further, the seasonal data is modelled by using Beta Probability Density Function (PDF) and a 24 hour solar curve for each season is generated. The solar farm power outputs are tested in IEEE 33 bus distribution network by using time-varying seasonal hourly loads, meanwhile system losses and bus voltages are calculated. The results show that with the passage of time, the impact of solar PV power on reduction of system losses gradually decrease due to yearly degradation of PV module efficiency. System losses at end of PV farm life are 10 - 12% higher than those losses as in the first year. Furthermore, low voltage buses also pose to risk as system voltages also start to decrease. From the analysis, it is suggested that for maintaining the quality of network, time varying detailed assessments should be performed during the calculations of sizing of distributed generation.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6361
Author(s):  
Giovanni Artale ◽  
Giuseppe Caravello ◽  
Antonio Cataliotti ◽  
Valentina Cosentino ◽  
Dario Di Cara ◽  
...  

This paper presents a feasibility study on how to implement power quality (PQ) metrics in a low-cost smart metering platform. The study is aimed at verifying the possibility of implementing PQ monitoring in distribution networks without replacing existing smart metering devices or adding new modules for PQ measurements, thus zeroing the installation costs. To this aim, an electronic board, currently used for remote energy metering, was chosen as a case study, specifically the STCOMET platform. Starting from the specifications of this device, the possibility of implementing power quality metrics is investigated in order to verify if compliance with standard requirements for PQ instruments can be obtained. Issues related to device features constraints are discussed; possible solutions and correction algorithms are presented and experimentally verified for different PQ metrics with a particular focus on harmonic analysis. The feasibility study takes into account both the use of on-board voltage and current transducers for low voltage applications and also the impact of external instrument transformers on measurement results.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3062 ◽  
Author(s):  
Xiong ◽  
Nour

The high penetration level of photovoltaic (PV) generation in distribution networks not only brings benefits like carbon savings, but also induces undesirable outcomes, like more harmonic components and voltage fluctuations. Driven by decreasing costs of energy storage, the focus of this paper is to investigate the feasibility of applying energy storage in the grid-connected PV system to mitigate its intermittency. Firstly, to appreciate the functionality of storage, a generic PV-battery-supercapacitor model was simulated in MATLAB/Simulink, and a flat load profile was obtained to enhance predictability from the network management point of view. However, the usage of supercapacitors at the residential level is limited, due to its high startup costs. Secondly, a detailed residential PV-battery model was implemented in the System Advisor Model (SAM) based on local data in Dubai. The optimal sizing of a battery system was determined by assessing two criteria: The number of excursions, and average target power, which are contradictory in optimization process. Statistical indicators show that a properly sized battery system can alleviate network fluctuations. The proposed sizing method can be also applied to other PV-storage systems. Finally, economic studies of PV-battery system demonstrated its competitiveness against standalone PV systems under appropriate tariff incentives.


Sign in / Sign up

Export Citation Format

Share Document