scholarly journals A Fractional Order Power System Stabilizer Applied on a Small-Scale Generation System

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2052 ◽  
Author(s):  
Florindo Ayres Junior ◽  
Carlos Costa Junior ◽  
Renan Medeiros ◽  
Walter Barra Junior ◽  
Cleonor Neves ◽  
...  

In this paper, a Fractional Order Power System controller (FOPSS) is designed, and its performance and robustness are experimentally evaluated by tests in a 10 kVA laboratory scale power system. The FOPSS design methodology is based on the tuning of an additional design variable, namely the fractional order of the controller transfer function. This design variable is tuned aiming to obtain a tradeoff between satisfactory damping of dominant oscillating mode and improved closed-loop system robustness. For controller synthesis, transfer function models were estimated from data collected at selected operating points and subsequently applied for the controller design and for obtaining upper bounds estimates on the operating-point depends on plant uncertainties. The experimental results show that the FOPPS was able to obtain a robust performance for the considered set of the power system operating conditions.

Author(s):  
Bidyadhar Rout ◽  
B.B. Pati ◽  
S. Panda

This paper studies the improvement of transient stability of a single-Machine Infinite-Bus (SMIB) power system using Proportional Derivative (PD) type Static Synchronous Series Compensator (SSSC) and damping controllers. The design problem has been considered as optimisation problem and a modified version of recently proposed Sine Cosine Algorithm (SCA) has been employed for determining the optimal controller parameters. Proposed modified SCA (mSCA) algorithm is first tested using bench mark test functions and compared with SCA, and other heuristic evolutionary optimization algorithms like Grey Wolf optimization (GWO), Particle Swarm optimization (PSO), Gravitational Search algorithm (GSA) and Differential Evolution algorithm to show its superiority. The proposed mSCA algorithm is then applied to optimize simultaneously the PD type lead lag controller parameters pertaining to SSSC and power system stabilizer(PSS). The proposed controller provides sufficient damping for power system oscillation in different operating conditions and disturbances. Results analysis reveal that proposed mSCA technique provides higher effectiveness and robustness in damping oscillations of the power system and increases the dynamic stability more.


2020 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Hady H. Fayek

Remote farms in Africa are cultivated lands planned for 100% sustainable energy and organic agriculture in the future. This paper presents the load frequency control of a two-area power system feeding those farms. The power system is supplied by renewable technologies and storage facilities only which are photovoltaics, biogas, biodiesel, solar thermal, battery storage and flywheel storage systems. Each of those facilities has 150-kW capacity. This paper presents a model for each renewable energy technology and energy storage facility. The frequency is controlled by using a novel non-linear fractional order proportional integral derivative control scheme (NFOPID). The novel scheme is compared to a non-linear PID controller (NPID), fractional order PID controller (FOPID), and conventional PID. The effect of the different degradation factors related to the communication infrastructure, such as the time delay and packet loss, are modeled and simulated to assess the controlled system performance. A new cost function is presented in this research. The four controllers are tuned by novel poor and rich optimization (PRO) algorithm at different operating conditions. PRO controller design is compared to other state of the art techniques in this paper. The results show that the PRO design for a novel NFOPID controller has a promising future in load frequency control considering communication delays and packet loss. The simulation and optimization are applied on MATLAB/SIMULINK 2017a environment.


Author(s):  
G. Fusco ◽  
M. Russo

This paper proposes a simple design procedure to solve the problem of controlling generator transient stability following large disturbances in power systems. A state-feedback excitation controller and power system stabilizer are designed to guarantee robustness against uncertainty in the system parameters. These controllers ensure satisfactory swing damping and quick decay of the voltage regulation error over a wide range of operating conditions. The controller performance is evaluated in a case study in which a three-phase short-circuit fault near the generator terminals in a four-bus power system is simulated.


2018 ◽  
Vol 7 (4) ◽  
pp. 17-55 ◽  
Author(s):  
Dasu Butti ◽  
Siva Kumar Mangipudi ◽  
Srinivasarao Rayapudi

In this article, a multi objective and a novel objective based Power System Stabilizer (PSS) design is proposed for a modified Heffron - Philiphs model (MHP) using bio inspired algorithms. A conventional Heffron – Philphs (CHP) model is developed by taking infinite bus voltage as reference, whereas MHP model is developed by taking transformer high voltage bus voltage as reference, which makes independent of external system data for the PSS design. PSS parameters are optimized using differential evolution (DE) algorithm and Firefly (FF) algorithm to obtain better dynamic response. The proposed method is tested on various operating conditions under different typical disturbances to test efficacy and robustness. Simulation results prove that better dynamic performance is obtained with the proposed stabilizers over the fixed gain stabilizers. This method of tuning would become a better alternative to conventional stabilizers as conventional stabilizers require retuning of parameters mostly when operating condition changes, which is a time-consuming process and laborious. Eigen value analysis is also done to prove the efficacy of the proposed method over the conventional methods.


Author(s):  
Aimee S. Morgans ◽  
Ann P. Dowling

Model-based control has been successfully implemented on an atmospheric pressure lean premixed combustion rig. The rig incorporated a pressure transducer in the combustor to provide a sensor measurement, with actuation provided by a fuel valve. Controller design was based on experimental measurement of the open loop transfer function. This was achieved using a valve input signal which was the sum of an identification signal and a control signal from an empirical controller to eliminate the non-linear limit cycle. The transfer function was measured for the main instability occurring at a variety of operating conditions, and was found to be fairly similar in all cases. Using Nyquist and H∞-loop shaping techniques, several robust controllers were designed, based on a mathematical approximation to the measured transfer function. These were implemented experimentally on the rig, and were found to stabilise it under a variety of operating conditions, with a greater reduction in the pressure spectrum than had been achieved by the empirical controller.


2015 ◽  
Vol 48 (26) ◽  
pp. 236-241 ◽  
Author(s):  
Fabrício G. Nogueira ◽  
Walter Barra ◽  
Carlos T. da Costa ◽  
José A.L. Barreiros ◽  
Jânio José de Lana

Sign in / Sign up

Export Citation Format

Share Document