scholarly journals Preliminary Performance Tests and Simulation of a V-Shape Roof Guide Vane Mounted on an Eco-Roof System

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2846 ◽  
Author(s):  
Xiaohang Wang ◽  
Wentong Chong ◽  
Kokhoe Wong ◽  
Liphuat Saw ◽  
Sinchew Poh ◽  
...  

The technical and economic features of a patented V-shape roof guide vane (VRGV) with a solar and wind power generation system mounted on an eco-roof system are presented in this paper. Moreover, this innovative VRGV was investigated on for the purpose of improving the performance of a vertical axis wind turbine (VAWT), which was installed on an eco-roof system to solve the low-efficiency power generation problem of the wind turbines under the condition of a low wind speed. This paper proposes a preliminary study for the performance of the VAWT with the VRGV on a building. This research used a mock-up building with a double slope roof, where a five straight-bladed VAWT was mounted and tested under two conditions, with and without the VRGV. From the comparative experiments, the self-starting performance and rotational speed of the VAWT mounted above a double slope roof with the VRGV have been significantly improved compared to the VAWT without the VRGV. Further, the power coefficient (Cp) of the VAWT can be augmented to about 71.2% increment due to the VRGV design. In addition, numerical simulations by computational fluid dynamics (CFD) were proposed to verify the augmented effect of the Cp of the VAWT under the influence of the VRGV in the experiment. Besides, economic estimation of the VRGV was conducted.

CFD letters ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 25-42
Author(s):  
Mohamad Zahid Mazlan ◽  
Fazila Mohd Zawawi ◽  
Teeab Tahzib ◽  
Kamarulafizam Ismail ◽  
Syahrullail Samion

Considerable efforts have been made by researchers to study the interaction between moving vehicles and wind turbines. The Savonius vertical-axis wind turbine was chosen due to its effectiveness in low-wind speed conditions. Speeding vehicles produce a scattered and non-uniform wind flow with disturbances. Hence, to prevent a negative torque, a row of wind guide vane panels was arranged in front of the blades of a wind turbine. The wind guide vane had the shape of an NACA4412 aerofoil to reduce the loss of wind energy, and to further increase wind velocity. A number of CFD simulations were designed using the Taguchi method to determine the optimum conditions for the power coefficient of the wind turbine in terms of the effects of three factors, namely, the distance between the guide vanes (d), the angle of the guide vanes (?), and the speed of the moving car (VC). An orthogonal array of L9(33) was designed. In addition, to observe the effects of the wind velocity induced by the moving vehicle, the wind turbine was incorporated with one degree of freedom (1DOF). The results showed that the speed of the moving car played a major role in determining the power coefficient. The order of influence of each factor was ranked as VC > ? > d. The performance of the wind turbine was sensitive to the speed of the car and the angle of the guide vanes, whereas it was insensitive to the distance between the guide vanes. Furthermore, the analysis of the signal-to-noise (S/N) ratio suggested that the optimal combination of factors for a maximum power coefficient were d = 0.4m, ? = 30°, and VC =30m/s. The optimum setting increased the Cp to 26% compared to the Cp that was produced without the installation of the guide vanes.


2018 ◽  
Vol 42 (4) ◽  
pp. 404-415
Author(s):  
H. Abu-Thuraia ◽  
C. Aygun ◽  
M. Paraschivoiu ◽  
M.A. Allard

Advances in wind power and tidal power have matured considerably to offer clean and sustainable energy alternatives. Nevertheless, distributed small-scale energy production from wind in urban areas has been disappointing because of very low efficiencies of the turbines. A novel wind turbine design — a seven-bladed Savonius vertical-axis wind turbine (VAWT) that is horizontally oriented inside a diffuser shroud and mounted on top of a building — has been shown to overcome the drawback of low efficiency. The objective this study was to analyze the performance of this novel wind turbine design for different wind directions and for different guide vanes placed at the entrance of the diffuser shroud. The flow field over the turbine and guide vanes was analyzed using computational fluid dynamics (CFD) on a 3D grid for multiple tip-speed ratios (TSRs). Four wind directions and three guide-vane angles were analyzed. The wind-direction analysis indicates that the power coefficient decreases to about half when the wind is oriented at 45° to the main axis of the turbine. The analysis of the guide vanes indicates a maximum power coefficient of 0.33 at a vane angle of 55°.


Author(s):  
Omar Sherif Mohamed ◽  
Ahmed Ibrahim ◽  
Ahmed M. R. El Baz

Abstract The last few years have witnessed researches concerned by vertical axis wind turbine (VAWT) performance considering its advantages compared to the horizontal axis wind turbines, as it can be operated in urban areas without producing noise, ease of maintenance and simple construction, in addition to its low cost. More interest is growing in developing efficient clusters of VAWT in order to increase power generation at specific sites by using multiple turbines. In the present work, the performance of various configurations of Darrieus type VAWT clusters is examined using computational fluid dynamics (CFD) simulations. The objective of this work is to increase the overall power coefficient of the turbines cluster compared to single rotor performance. This objective shall be achieved by examining mutual interactions between rotors arranged in close proximity and examining the effect of oblique angle between rotors on overall performance of the cluster of rotors. The performance is assessed by observing the overall power coefficient of the cluster. Also, the velocity wake of the simulated three rotors turbine cases was analyzed and compared to the that of the single rotor.


2020 ◽  
Vol 9 (3) ◽  
pp. 383-392
Author(s):  
Khalid Mrigua ◽  
Abdelghani Toumi ◽  
Mounia Zemamou ◽  
Bader Ouhmmou ◽  
Yahya Lahlou ◽  
...  

The Savonius-conventional wind turbine is a class of wind turbines designed with a vertical axis. It has a good starting capacity and   an insensitivity to wind direction. It works relatively at low wind speed in an easy installation. Savonius wind turbine faces major drawbacks, including some of the low efficiency and high negative torque created by the returning blade. Many attempts have been undertaken to optimize the blade’s shape to increase the performance of these wind turbines. The vertical axis is still under development. The elliptical-blades with a cut angle equal 47.50° have recently shown enhanced performance. In this study, we investigate the effect of Elliptical-bladed multistage Savonius Rotors (rotor aspect ratio, stage aspect ratio) on the performance by means of numerical simulation. The results obtained by comparison of one, two, and three-stage rotors indicate that the maximum power coefficient increase with a number of the stages (for the rotors with similar RAR of 0.7). Moreover, for the rotors with similar SAR of 0.7, the two stages have the highest performance than others.©2020. CBIORE-IJRED. All rights reserved


Author(s):  
László Daróczy ◽  
Mohamed H. Mohamed ◽  
Gábor Janiga ◽  
Dominique Thévenin

Wind energy represents nowadays a very important source of energy for many countries. It provides an efficient and effective solution to reduce fuel consumption as well as pollutant emissions. VAWTs (vertical axis wind turbines) were originally considered as very promising, before being superseded by the present, horizontal axis turbines. There is now a resurgence of interests for VAWTs, in particular Darrieus turbines. VAWTs like the H-rotor Darrieus turbine appear to be particularly promising for low wind speed conditions, but suffer from a low efficiency compared to horizontal axis turbines. Additionally, Darrieus turbines are not self-starting, which is a major drawback. The present paper introduces a new idea to improve the global performance of Darrieus rotors, relying on a slotted flap. Due to its low manufacturing costs and size, a two-bladed H-rotor with a radius of 2 meters was retained as a first application example. The blade airfoil relies on the S1046 profile, which was shown in previous studies to be superior under relevant operating conditions [1]. The solidity (Nc/R) of the rotor is kept at 0.25 for all the computations. In the first step a parametric geometry is created, where the end of the blade is converted into a slotted flap (with appropriate rounding). The main parameters are the distance between the main part of the blade and the flap (width of gap), the angle of the slot and the angle of the flap. In the second step a systematic analysis of the effect of those variables on the force and power coefficient is carried out using three-dimensional full factorial Design-of-Experiment with an in-house parameterization and optimization software. For each configuration, force and power coefficients are calculated for four different tip-speed ratios (including the value, where the S1046 profile without flap shows its maximal power coefficient). The evaluation of each configuration is performed using a commercial CFD software. The flow is assumed in this first study to be two-dimensional and unsteady. Turbulence intensities follow the relevant norms (DIN EN 61400). Finally the results are compared to each other and to the reference design (S1046 without flap) and conclusions are given regarding power coefficient and flap load.


Author(s):  
Jobaidur Khan ◽  
Mohammad Mohibbul Bashar ◽  
Mosfequr Rahman

Vertical Axis Wind Turbine (VAWT) is the least efficient conventional wind energy generator. But the inherent advantage of facing the wind direction and capability to operate in low wind speed and non-smooth wind flow regions are two main reasons to research on it and to find more efficient design. The simplest form of VAWT is known as Savonius turbine and difference of the drag force on its blades is the operating principal. The main objective of this study is to analyze the performance data (numerically obtained) Savonius turbine blades. This study is in preliminary stage; experiment will be performed in near future. A Computational Fluid Dynamics (CFD) analysis has been used. Effect of changing the inlet velocity and mesh dependency is observed in this study. These models are simulated with CFD software ANSYS/FLUENT. Comparing previous models it has been found that, airfoil shaped three bladed rotor produces better result than regular semi-circular wind turbines. Changing the airfoil shape may show more interesting result in future.


2020 ◽  
Vol 26 (4) ◽  
pp. 64-79
Author(s):  
Ahmed Saadi AlJarakh ◽  
Hussain Yousif Mahmood

As the prices of the fuel and power had fluctuated many times in the last decade and new policies appeared and signed by most of the world countries to eliminate global warming and environmental impact on the earth surface and humanity exciting, an urgent need appeared to develop the renewable energy harnessing technologies on the short-term and long-term and one of these promising technologies are the vertical axis wind turbines, and mostly the combined types. The purpose of the present work is to combine a cavity type Savonius with straight bladed Darrieus to eliminate the poor self-starting ability for Darrieus type and low performance for Savonius type and for this purpose, a three-bladed Darrieus type with symmetrical S1046 airfoil was tested experimentally and numerically at different wind speeds (4.5 m/s, 8 m/s and 10 m/s) and it showed a poor self-starting ability at low wind speed although its higher performance at high wind speed. However when adding the cavities in two setup configuration and testing it at the same conditions, it was found that when adding the cavities as reversed cups in the core of the turbine, the performance increased and the power coefficient reached a maximum value at 10 m/s wind speed and it was observed to be 0.0914 , but when the solidity increased by adding three cavities, the performance was higher at low wind speed (4.5 m/s) but it tragically decreased at higher wind speed which indicates that the performance depends on the solidity and the turbine configuration. On the other hand, the numerical simulation showed a good match with the experimental results although it under-predicted the performance.


Author(s):  
Hideki Kuma ◽  
Manabu Takao ◽  
Toshiyuki Beppu ◽  
Takao Maeda ◽  
Yasunari Kamada ◽  
...  

A straight-bladed vertical axis wind turbine with a directed guide vane has been proposed in order to enhance its torque. The experimental study of the proposed wind turbine was carried out by a wind tunnel with an outlet diameter of 1.8m. The tested rotor has 3 straight rotor blades with a profile of NACA0018, a radius of 0.35 m and a height of 0.7 m. The guide vane which consists of an arc plate rotates around the rotor and is directed to the wind by aerodynamic force generated by tail vanes, so as to put the guide vane in upstream of the rotor. As a result, the performance of the straight-bladed vertical axis turbine was improved by means of the directed guide vane and the power coefficient of the proposed wind turbine was approximately 1.2 times higher than that of the original wind turbine which has no guide vane. Further, flows around the proposed wind turbine have been investigated by use of the vortex method which provides a Lagrangian simulation of unsteady and vortical flows.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 233
Author(s):  
Marco A. Moreno-Armendáriz ◽  
Eddy Ibarra-Ontiveros ◽  
Hiram Calvo ◽  
Carlos A. Duchanoy

In this work, a 3D computational model based on computational fluid dynamics (CFD) is built to simulate the aerodynamic behavior of a Savonius-type vertical axis wind turbine with a semi-elliptical profile. This computational model is used to evaluate the performance of the wind turbine in terms of its power coefficient (Cp). Subsequently, a full factorial design of experiments (DOE) is defined to obtain a representative sample of the search space on the geometry of the wind turbine. A dataset is built on the performance of each geometry proposed in the DOE. This process is carried out in an automated way through a scheme of integrated computational platforms. Later, a surrogate model of the wind turbine is fitted to estimate its performance using machine learning algorithms. Finally, a process of optimization of the geometry of the wind turbine is carried out employing metaheuristic optimization algorithms to maximize its Cp; the final optimized designs are evaluated using the computational model for validating their performance.


2021 ◽  
Vol 10 (3) ◽  
pp. 585-595
Author(s):  
Ahmad Adnan Shoukat ◽  
Adnan Aslam Noon ◽  
Muhammad Anwar ◽  
Hafiz Waqar Ahmed ◽  
Talha Irfan Khan ◽  
...  

Wind power is a significant and urging sustainable power source asset to petroleum derivatives. Wind machines, for example, H-Darrieus vertical pivot wind turbines (VAWTs) have increased much notoriety in research network throughout the most recent couple of decades because of their applications at destinations having moderately low wind speed. Be that as it may, it is noticed that such wind turbines have low effectiveness. The point of this examination is to plan rotor cutting edges which could create most extreme power yield and execution. Different plan factors, for instance, harmony length, pitch edge, rotor distance across, cutting edge length and pitch point are explored to upgrade the presentation of VAWT. Rotor cutting edges are manufactured using the NACA-0030 structure and tried in wind burrow office and contrast its outcomes and DSM 523 profile. Numerical simulations are performed to get best geometry and stream conduct for achieving greatest power. It is seen that for higher tip-speed-proportion (TSR), shorter harmony length and bigger distance across the rotor (i.e., lower robustness) yields higher effectiveness in NACA 0030. Nevertheless, for lower TSR, the more drawn out agreement length and slighter distance across rotor (i.e., higher strength) gives better implementation. The pitch point is - 2° for TSR = 3 and - 3° for TSR = 2.5. The most extreme power yield of the wind turbine is acquired for the sharp edge profile NACA 0030. Besides, instantaneous control coefficient, power coefficient (CP) is the greatest reason for azimuthal edge of 245° and least esteem for 180°.


Sign in / Sign up

Export Citation Format

Share Document