A Straight-Bladed Vertical Axis Wind Turbine With a Directed Guide Vane: Mechanism of Performance Improvement

Author(s):  
Hideki Kuma ◽  
Manabu Takao ◽  
Toshiyuki Beppu ◽  
Takao Maeda ◽  
Yasunari Kamada ◽  
...  

A straight-bladed vertical axis wind turbine with a directed guide vane has been proposed in order to enhance its torque. The experimental study of the proposed wind turbine was carried out by a wind tunnel with an outlet diameter of 1.8m. The tested rotor has 3 straight rotor blades with a profile of NACA0018, a radius of 0.35 m and a height of 0.7 m. The guide vane which consists of an arc plate rotates around the rotor and is directed to the wind by aerodynamic force generated by tail vanes, so as to put the guide vane in upstream of the rotor. As a result, the performance of the straight-bladed vertical axis turbine was improved by means of the directed guide vane and the power coefficient of the proposed wind turbine was approximately 1.2 times higher than that of the original wind turbine which has no guide vane. Further, flows around the proposed wind turbine have been investigated by use of the vortex method which provides a Lagrangian simulation of unsteady and vortical flows.

Author(s):  
Manabu Takao ◽  
Takao Maeda ◽  
Yasunari Kamada ◽  
Michiaki Oki ◽  
Hideki Kuma

A straight-bladed vertical axis wind turbine with a directed guide vane row has been proposed in order to enhance its torque. The experimental study of the proposed wind turbine was carried out by a wind tunnel with an outlet diameter of 1.8m. The tested rotor has some straight rotor blades with a profile of NACA0015, a radius diameter of 0.3 m and a height of 0.7 m. The guide vane row having 3 arc plates rotates around the rotor and is directed to the wind by aerodynamic force generated by tail vanes, so as to put the guide vane row in upstream of the rotor. As a result, the performance of the straight-bladed vertical axis turbine was improved by means of the directed guide vane row. Further, by the use of the guide vane row adopted in the study, the power coefficient of the proposed wind turbine was approximately 1.5 times higher than that of the original wind turbine which has no guide vane.


2018 ◽  
Vol 42 (4) ◽  
pp. 404-415
Author(s):  
H. Abu-Thuraia ◽  
C. Aygun ◽  
M. Paraschivoiu ◽  
M.A. Allard

Advances in wind power and tidal power have matured considerably to offer clean and sustainable energy alternatives. Nevertheless, distributed small-scale energy production from wind in urban areas has been disappointing because of very low efficiencies of the turbines. A novel wind turbine design — a seven-bladed Savonius vertical-axis wind turbine (VAWT) that is horizontally oriented inside a diffuser shroud and mounted on top of a building — has been shown to overcome the drawback of low efficiency. The objective this study was to analyze the performance of this novel wind turbine design for different wind directions and for different guide vanes placed at the entrance of the diffuser shroud. The flow field over the turbine and guide vanes was analyzed using computational fluid dynamics (CFD) on a 3D grid for multiple tip-speed ratios (TSRs). Four wind directions and three guide-vane angles were analyzed. The wind-direction analysis indicates that the power coefficient decreases to about half when the wind is oriented at 45° to the main axis of the turbine. The analysis of the guide vanes indicates a maximum power coefficient of 0.33 at a vane angle of 55°.


CFD letters ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 25-42
Author(s):  
Mohamad Zahid Mazlan ◽  
Fazila Mohd Zawawi ◽  
Teeab Tahzib ◽  
Kamarulafizam Ismail ◽  
Syahrullail Samion

Considerable efforts have been made by researchers to study the interaction between moving vehicles and wind turbines. The Savonius vertical-axis wind turbine was chosen due to its effectiveness in low-wind speed conditions. Speeding vehicles produce a scattered and non-uniform wind flow with disturbances. Hence, to prevent a negative torque, a row of wind guide vane panels was arranged in front of the blades of a wind turbine. The wind guide vane had the shape of an NACA4412 aerofoil to reduce the loss of wind energy, and to further increase wind velocity. A number of CFD simulations were designed using the Taguchi method to determine the optimum conditions for the power coefficient of the wind turbine in terms of the effects of three factors, namely, the distance between the guide vanes (d), the angle of the guide vanes (?), and the speed of the moving car (VC). An orthogonal array of L9(33) was designed. In addition, to observe the effects of the wind velocity induced by the moving vehicle, the wind turbine was incorporated with one degree of freedom (1DOF). The results showed that the speed of the moving car played a major role in determining the power coefficient. The order of influence of each factor was ranked as VC > ? > d. The performance of the wind turbine was sensitive to the speed of the car and the angle of the guide vanes, whereas it was insensitive to the distance between the guide vanes. Furthermore, the analysis of the signal-to-noise (S/N) ratio suggested that the optimal combination of factors for a maximum power coefficient were d = 0.4m, ? = 30°, and VC =30m/s. The optimum setting increased the Cp to 26% compared to the Cp that was produced without the installation of the guide vanes.


Author(s):  
H. Flores-Saldaña ◽  
A. Gallegos-Muñoz ◽  
N. C. Uzarraga-Rodriguez ◽  
V. H. Rangel-Hernandez

This work presents a numerical analysis of a four-bladed Rooftop vertical axis wind turbine (VAWT). The effects generated on the performance of turbine by the overlap variation between blades of wind rotor were analyzed. The numerical simulations were developed using commercial software based on Computational Fluid Dynamic (CFD). Each one of the models generated was built in a 3D computational model. A sliding mesh model (SMM) capability was used to present in dimensionless form the moment coefficient and power coefficient of the wind turbine based on the relationship between wind speed and rotor rotational speed. The results show that the aerodynamic performance is better with overlap between rotor blades, resulting in a significant increase in the moment coefficient and power coefficient. Having that in the cases of four-bladed Rooftop rotor with overlap both coefficients increase about 29% comparing with four-bladed Rooftop rotor without overlap between blades.


2021 ◽  
Vol 11 (13) ◽  
pp. 6198
Author(s):  
Javier Blanco ◽  
Juan de Dios Rodriguez ◽  
Antonio Couce ◽  
Maria Isabel Lamas

In order to improve the efficiency of the Savonius type vertical axis wind turbine, the present work analyzes an improvement based on an innovative rotor geometry. The rotor blades are inspired on an organic shape mathematically analyzed, the Fibonacci’s spiral, presented in many nature systems as well as in art. This rotor was analyzed in a wind tunnel and through a CFD model. The power coefficients at different tip speed ratios (TSR) were characterized and compared for the Savonius turbine and two versions using the Fibonacci’s spiral. One of the proposed geometries improves the performance of the Savonius type. Particularly, the optimal configuration lead to an improvement in maximum power coefficient of 14.5% in the numerical model respect to a conventional Savonius turbine and 17.6% in the experimental model.


2012 ◽  
Vol 34 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Hoang Thi Bich Ngoc

Vertical axis wind turbine technology has been applied last years, very long after horizontal axis wind turbine technology. Aerodynamic problems of vertical axis wind machines are discussible. An important problem is the determination of the incidence law in the interaction between wind and rotor blades. The focus of the work is to establish equations of the incidence depending on the blade azimuth, and to solve them. From these results, aerodynamic torques and power can be calculated. The incidence angle is a parameter of velocity triangle, and both the factors depend not only on the blade azimuth but also on the ratio of rotational speed and horizontal speed. The built computational program allows theoretically selecting the relationship of geometric parameters of wind turbine in accordance with requirements on power, wind speed and installation conditions.


2021 ◽  
pp. 0309524X2110039
Author(s):  
Amgad Dessoky ◽  
Thorsten Lutz ◽  
Ewald Krämer

The present paper investigates the aerodynamic and aeroacoustic characteristics of the H-rotor Darrieus vertical axis wind turbine (VAWT) combined with very promising energy conversion and steering technology; a fixed guide-vanes. The main scope of the current work is to enhance the aerodynamic performance and assess the noise production accomplished with such enhancement. The studies are carried out in two phases; the first phase is a parametric 2D CFD simulation employing the unsteady Reynolds-averaged Navier-Stokes (URANS) approach to optimize the design parameters of the guide-vanes. The second phase is a 3D CFD simulation of the full turbine using a higher-order numerical scheme and a hybrid RANS/LES (DDES) method. The guide-vanes show a superior power augmentation, about 42% increase in the power coefficient at λ = 2.75, with a slightly noisy operation and completely change the signal directivity. A remarkable difference in power coefficient is observed between 2D and 3D models at the high-speed ratios stems from the 3D effect. As a result, a 3D simulation of the capped Darrieus turbine is carried out, and then a noise assessment of such configuration is assessed. The results show a 20% increase in power coefficient by using the cap, without significant change in the noise signal.


2012 ◽  
Vol 499 ◽  
pp. 259-264
Author(s):  
Qi Yao ◽  
Ying Xue Yao ◽  
Liang Zhou ◽  
S.Y. Zheng

This paper presents a simulation study of an H-type vertical axis wind turbine. Two dimensional CFD model using sliding mesh technique was generated to help understand aerodynamics performance of this wind turbine. The effect of the pith angle on H-type vertical axis wind turbine was studied based on the computational model. As a result, this wind turbine could get the maximum power coefficient when pitch angle adjusted to a suited angle, furthermore, the effects of pitch angle and azimuth angle on single blade were investigated. The results will provide theoretical supports on study of variable pitch of wind turbine.


2012 ◽  
Vol 189 ◽  
pp. 448-452
Author(s):  
Yan Jun Chen ◽  
Guo Qing Wu ◽  
Yang Cao ◽  
Dian Gui Huang ◽  
Qin Wang ◽  
...  

Numerical studies are conducted to research the performance of a kind of lift-drag type vertical axis wind turbine (VAWT) affected by solidity with the CFD method. Moving mesh technique is used to construct the model. The Spalart-Allmaras one equation turbulent model and the implicit coupled algorithm based on pressure are selected to solve the transient equations. In this research, how the tip speed ratio and the solidity of blade affect the power coefficient (Cp) of the small H-VAWT is analyzed. The results indicate that Cp curves exhibit approximate parabolic form with its maximum in the middle range of tip speed ratio. The two-blade wind turbine has the lowest Cp while the three-blade one is more powerful and the four-blade one brings the highest power. With the certain number of blades, there is a best chord length, and too long or too short chord length may reduce the Cp.


2012 ◽  
Vol 215-216 ◽  
pp. 1323-1326
Author(s):  
Ming Wei Xu ◽  
Jian Jun Qu ◽  
Han Zhang

A small vertical axis wind turbine with wind speed self-adapting was designed. The diameter and height of the turbine were both 0.7m. It featured that the blades were composed of movable and fixed blades, and the opening and closing of the movable blades realized the wind speed self-adapting. Aerodynamic performance of this new kind turbine was tested in a simple wind tunnel. Then the self-starting and power coefficient of the turbine were studied. The turbine with load could reliably self-start and operate stably even when the wind velocity was only 3.6 m/s. When the wind velocity was 8 m/s and the load torque was 0.1Nm, the movable blades no longer opened and the wind turbine realized the conversion from drag mode to lift mode. With the increase of wind speed, the maximum power coefficient of the turbine also improves gradually. Under 8 m/s wind speed, the maximum power coefficient of the turbine reaches to 12.26%. The experimental results showed that the new turbine not only improved the self-starting ability of the lift-style turbine, but also had a higher power coefficient in low tip speed ratio.


Sign in / Sign up

Export Citation Format

Share Document