scholarly journals Integrated Energy System Configuration Optimization for Multi-Zone Heat-Supply Network Interaction

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3052 ◽  
Author(s):  
Tang Bo ◽  
Gao Gangfeng ◽  
Xia Xiangwu ◽  
Yang Xiu

The integrated energy system effectively improves the comprehensive utilization of energy through cascade utilization and coordinated scheduling of various types of energy. Based on the independent integrated energy system, the thermal network interaction between different load characteristic regions is introduced, requiring a minimum thermal grid construction cost, CCHP investment operation cost and carbon emission tax as the comprehensive optimization targets, and making overall optimization to the configuration and operation of the multi-region integrated energy systems. This paper focuses on the planning of equipment capacity of multi-region integrated energy system based on a CCHP system and heat network. Combined with the above comprehensive target and heat network model, a mixed integer linear programming model for a multi-region CCHP system capacity collaborative optimization configuration is established. The integrated energy system, just a numerical model solved with the LINGO software, is presented. Taking a typical urban area in Shanghai as an example, the simulation results show that the integrated energy system with multi-zone heat-suply network interaction compared to the single area CCHP model improved the clean energy utilization of the system, rationally allocates equipment capacity, promotes the local consumption of distributed energy, and provides better overall system benefits.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yuan Yu ◽  
Tieyan Zhang ◽  
Yan Zhao

A collaborative optimization strategy of an integrated energy system aiming at improving energy efficiency is studied in this paper for the cluster optimization of an integrated energy system (IES). In this paper, an improved discrete consistency method based on the coordination optimization method for IES is proposed. An IES model considering the mixed energy supply of electricity, heat, and gas is constructed in a single region. And then an objective function with the maximum return is established, on the premise of assuming that the prices of electricity, heat, and gas can be used as an economical means to adjust the energy utilization. Finally, the consistency theory is applied to the IES, and the improved discrete consistency algorithm is utilized to optimize the objective function. In the case study, a certain region IES is taken as an example in Northeast China. The case study demonstrates the effectiveness and accuracy of the coordination optimization method for IES.


2021 ◽  
Vol 228 ◽  
pp. 01019
Author(s):  
Baosheng Chen ◽  
Xu han ◽  
Weiqi Zhang ◽  
Hankui Tian ◽  
Dongni Wei ◽  
...  

With the development of society, people’s demand for clean energy is constantly increasing, and it is in this context that the concept of integrated energy systems was born. As the main component of the energy internet, the integrated energy system is now considered to be the main form of energy operation in the future of human society, and the synergistic optimization of different forms of energy can better enhance energy utilization and achieve the effect of 1+1>2. The planning and design of the comprehensive energy system will involve the data collation and characteristic analysis of energy types, so many factors should be taken into account when planning the specific scheme and operation of the comprehensive energy system’s general access, different types of energy forms should be fully considered in the planning of the characteristics of the energy, such as easy control of electrical energy, convenient production, but it is difficult for us to make a decision within a short period of time under normal circumstances.


Author(s):  
Shaoyun Ge ◽  
Xiaoou Liu ◽  
Lukun Ge

Abstract In this paper, a robust planning method of regional integrated energy system (IES) considering the uncertainty of cooling, heat and electrical loads on the demand side is submitted. First, the energy hub (EH) model of regional IES with Combined Cooling Heating and Power (CCHP), electric air-conditioning unit (EC) and gas boiler (GB) is established. Second, the uncertainty of load is described by the method of adjustable interval, and the robust planning model of regional IES is formed. Third, the robust programming model can be transformed into a convex mixed integer planning model, and then solved. Finally, the case study is carried out with a comprehensive area of Tianjin in China, the results are analyzed to verify the effectiveness of the proposed planning method.


2021 ◽  
pp. 1-18
Author(s):  
Jiahang Yuan ◽  
Yun Li ◽  
Xinggang Luo ◽  
Lingfei Li ◽  
Zhongliang Zhang ◽  
...  

Regional integrated energy system (RIES) provides a platform for coupling utilization of multi-energy and makes various energy demand from client possible. The suitable RIES composition scheme will upgrade energy structure and improve integrated energy utilization efficiency. Based on a RIES construction project in Jiangsu province, this paper proposes a new multi criteria decision-making (MCDM) method for the selection of RIES schemes. Because that subjective evaluation on RIES schemes benefit under criteria has uncertainty and hesitancy, intuitionistic trapezoidal fuzzy number (ITFN) which has the better capability to model ill-known quantities is presented. In consideration of risk attitude and interdependency of criteria, a new decision model with risk coefficients, Mahalanobis-Taguchi system and Choquet integral is proposed. Firstly, the decision matrices given by experts are normalized, and then are transformed to minimum expectation matrices according to different risk coefficients. Secondly, the weights of criteria from different experts are calculated by Mahalanobis-Taguchi system. Mobius transformation coefficients based on interaction degree are to calculate 2-order additive fuzzy measures, and then the comprehensive weights of criteria are obtained by fuzzy measures and Choquet integral. Thirdly, based on group decision consensus requirement, the weights of experts are obtained by the maximum entropy and grey correlation. Fourthly, the minimum expectation matrices are aggregated by the intuitionistic trapezoidal fuzzy Bonferroni mean operator. Thus, the ranking result according to the comparison rules using the minimum expectation and the maximum expectation is obtained. Finally, an illustrative example is taken in the present study to make the proposed method comprehensible.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 636 ◽  
Author(s):  
Aristotle Ubando ◽  
Isidro Marfori ◽  
Kathleen Aviso ◽  
Raymond Tan

Community-based off-grid polygeneration plants based on micro-hydropower are a practical solution to provide clean energy and other essential utilities for rural areas with access to suitable rivers. Such plants can deliver co-products such as purified water and ice for refrigeration, which can improve standards of living in such remote locations. Although polygeneration gives advantages with respect to system efficiency, the interdependencies of the integrated process units may come as a potential disadvantage, due to susceptibility to cascading failures when one of the system components is partially or completely inoperable. In the case of a micro-hydropower-based polygeneration plant, a drought may reduce electricity output, which can, in turn, reduce the level of utilities available for use by the community. The study proposes a fuzzy mixed-integer linear programming model for the optimal operational adjustment of an off-grid micro-hydropower-based polygeneration plant seeking to maximize the satisfaction levels of the community utility demands, which are represented as fuzzy constraints. Three case studies are considered to demonstrate the developed model. The use of a diesel generator for back-up power is considered as an option to mitigate inoperability during extreme drought conditions.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6729
Author(s):  
Yang Chen ◽  
Yao Zhang ◽  
Jianxue Wang ◽  
Zelong Lu

As the need for clean energy increases, massive distributed energy resources are deployed, strengthening the interdependence of multi-carrier energy systems. This has raised concerns on the electricity-heat system’s co-operation for lower operation costs, higher energy efficiency, and higher flexibility. This paper discusses the co-operation of integrated electricity–heat system. In the proposed model, network constraints in both systems are considered to guarantee system operations’ security: the branch flow model is utilized to describe the electricity network, while a convexified model considering variable mass flow and temperature dynamics is adopted to describe the heat network. Additionally, novel models for heat pumps and the stratified water tank are proposed to represent the physical system more accurately. Finally, to preserve the information privacy of separate systems, a distributed algorithm is proposed based on the alternating direction method of multipliers (ADMM). Numerical studies show that the co-operation could provide a more economical and reliable solution than the decoupled operation of the heat network and electricity network. Moreover, the ADMM-based algorithm could derive solutions very close to the optimum provided by centralized optimization.


2019 ◽  
Vol 9 (7) ◽  
pp. 1367 ◽  
Author(s):  
Zicong Yu ◽  
Xiaohua Yang ◽  
Lu Zhang ◽  
Yongqiang Zhu ◽  
Ruihua Xia ◽  
...  

Aiming at the optimal configuration of a regional integrated energy system (IES), this paper proposes an energy-conversion interface (ECI) model that simplifies the complex multienergy network into a multi-input–multioutput dual-port network, consequently achieving the energy-coupling relationship between the energy-supply side and the demand side. An optimized configuration model of the ECI was constructed by considering economic performance, such as device-installation cost, operation and maintenance cost, and environmental cost, as well as energy-saving performance, such as energy-utilization efficiency. Then, the ECI optimal-configuration model was established by taking a campus in northern China as an example. To verify the validity of the model, device planning quantity and daily energy scheduling of the integrated energy system of the campus were obtained by solving the model with the particle-swarm optimization method. Finally, sensitivity analysis of the system to energy prices and the reweight approach for the targets are also given in this paper, providing a decision-making basis for system planning.


Sign in / Sign up

Export Citation Format

Share Document