scholarly journals Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 215 ◽  
Author(s):  
Donghun Lee ◽  
Kwanho Kim

Recently, the prediction of photovoltaic (PV) power has become of paramount importance to improve the expected revenue of PV operators and the effective operations of PV facility systems. Additionally, the precise PV power output prediction in an hourly manner enables more sophisticated strategies for PV operators and markets as the electricity price in a renewable energy market is continuously changing. However, the hourly prediction of PV power outputs is considered as a challenging problem due to the dynamic natures of meteorological information not only in a day but also across days. Therefore, in this paper, we suggest three PV power output prediction methods such as artificial neural network (ANN)-, deep neural network (DNN)-, and long and short term memory (LSTM)-based models that are capable to understand the hidden relationships between meteorological information and actual PV power outputs. In particular, the proposed LSTM based model is designed to capture both hourly patterns in a day and seasonal patterns across days. We conducted the experiments by using a real-world dataset. The experimental results show that the proposed ANN based model fails to yield satisfactory results, and the proposed LSTM based model successfully better performs more than 50% compared to the conventional statistical models in terms of mean absolute error.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ludi Wang ◽  
Wei Zhou ◽  
Ying Xing ◽  
Xiaoguang Zhou

The prevention, evaluation, and treatment of hypertension have attracted increasing attention in recent years. As photoplethysmography (PPG) technology has been widely applied to wearable sensors, the noninvasive estimation of blood pressure (BP) using the PPG method has received considerable interest. In this paper, a method for estimating systolic and diastolic BP based only on a PPG signal is developed. The multitaper method (MTM) is used for feature extraction, and an artificial neural network (ANN) is used for estimation. Compared with previous approaches, the proposed method obtains better accuracy; the mean absolute error is 4.02 ± 2.79 mmHg for systolic BP and 2.27 ± 1.82 mmHg for diastolic BP.


2019 ◽  
Vol 8 (4) ◽  
pp. 3152-3158

With the digitization, the importance of content writing is being increased. This is due to the huge improvement in accessibility and the major impact of digital content on human beings. Due to veracity and huge demand for digital content, author profiling becomes a necessity to identify the correct person for particular content writing. This paper works on deep neural network models to identify the gender of author for any particular content. The analysis has been done on the corpus dataset by using artificial neural networks with different number of layers, long short term memory based Recurrent Neural Network (RNN), bidirectional long short term memory based RNN and attention-based RNN models using mean absolute error, root mean square error, accuracy, and loss as analysis parameters. The results of different epochs show the significance of each model.


2021 ◽  
Vol 10 (11) ◽  
pp. e33101119347
Author(s):  
Ewethon Dyego de Araujo Batista ◽  
Wellington Candeia de Araújo ◽  
Romeryto Vieira Lira ◽  
Laryssa Izabel de Araujo Batista

Introdução: a dengue é uma arbovirose causada pelo vírus DENV e transmitida para o homem através do mosquito Aedes aegypti. Atualmente, não existe uma vacina eficaz para combater todas as sorologias do vírus. Diante disso, o combate à doença se volta para medidas preventivas contra a proliferação do mosquito. Os pesquisadores estão utilizando Machine Learning (ML) e Deep Learning (DL) como ferramentas para prever casos de dengue e ajudar os governantes nesse combate. Objetivo: identificar quais técnicas e abordagens de ML e de DL estão sendo utilizadas na previsão de dengue. Métodos: revisão sistemática realizada nas bases das áreas de Medicina e de Computação com intuito de responder as perguntas de pesquisa: é possível realizar previsões de casos de dengue através de técnicas de ML e de DL, quais técnicas são utilizadas, onde os estudos estão sendo realizados, como e quais dados estão sendo utilizados? Resultados: após realizar as buscas, aplicar os critérios de inclusão, exclusão e leitura aprofundada, 14 artigos foram aprovados. As técnicas Random Forest (RF), Support Vector Regression (SVR), e Long Short-Term Memory (LSTM) estão presentes em 85% dos trabalhos. Em relação aos dados, na maioria, foram utilizados 10 anos de dados históricos da doença e informações climáticas. Por fim, a técnica Root Mean Absolute Error (RMSE) foi a preferida para mensurar o erro. Conclusão: a revisão evidenciou a viabilidade da utilização de técnicas de ML e de DL para a previsão de casos de dengue, com baixa taxa de erro e validada através de técnicas estatísticas.


2022 ◽  
Vol 72 (1) ◽  
pp. 49-55
Author(s):  
Biji Nair ◽  
S. Mary Saira Bhanu

Fog computing architecture competent to support the mission-oriented network-centric warfare provides the framework for a tactical cloud in this work. The tactical cloud becomes situation-aware of the war from the information relayed by fog nodes (FNs) on the battlefield. This work aims to sustain the network of FNs by maintaining the operational efficiency of the FNs on the battlefield at the tactical edge. The proposed solution monitors and predicts the likely overloading of an FN using the long short-term memory model through a buddy FN at the fog server (FS). This paper also proposes randomised task scheduling (RTS) algorithm to avert the likely overloading of an FN by pre-empting tasks from the FN and scheduling them to another FN. The experimental results demonstrate that RTS with linear complexity has a schedulability measure 8% - 26% higher than that of other base scheduling algorithms. The results show that the LSTM model has low mean absolute error compared to other time-series forecasting models.


2019 ◽  
Author(s):  
Dimitri Abrahamsson ◽  
June-Soo Park ◽  
Marina Sirota ◽  
Tracey Woodruff

We developed two in silico quantification methods for chemicals analyzed with capillary electrophoresis electrospray ionization-mass spectrometry (CE-ESI-MS) using machine learning - a random forest (RF) and an artificial neural network (ANN). The algorithms can be used to predict chemical concentrations based on the chemicals’ relative response factors (RRFs) and their physicochemical properties. The RF and ANN predicted the measured concentrations with a mean absolute error of 0.2 log units and a coefficient of determination (R2) of about 0.85 for the testing set.


2020 ◽  
Vol 10 (22) ◽  
pp. 8169
Author(s):  
Tae-Woong Yoo ◽  
Il-Seok Oh

In this paper, we propose seasonal long short-term memory (SLSTM), which is a method for predicting the sales of agricultural products, to stabilize supply and demand. The SLSTM model is trained using the seasonality attributes of week, month, and quarter as additional inputs to historical time-series data. The seasonality attributes are entered into the SLSTM network model individually or in combination. The performance of the proposed SLSTM model was compared with those of auto_arima, Prophet, and a standard LSTM in terms of three performance metrics (mean absolute error (MAE), root mean squared error (RMSE), and normalization mean absolute error (NMAE)). The experimental results show that the error rate of the proposed SLSTM model is significantly lower than those of other classical methods.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1178
Author(s):  
Chin-Wen Liao ◽  
I-Chi Wang ◽  
Kuo-Ping Lin ◽  
Yu-Ju Lin

To protect the environment and achieve the Sustainable Development Goals (SDGs), reducing greenhouse gas emissions has been actively promoted by global governments. Thus, clean energy, such as wind power, has become a very important topic among global governments. However, accurately forecasting wind power output is not a straightforward task. The present study attempts to develop a fuzzy seasonal long short-term memory network (FSLSTM) that includes the fuzzy decomposition method and long short-term memory network (LSTM) to forecast a monthly wind power output dataset. LSTM technology has been successfully applied to forecasting problems, especially time series problems. This study first adopts the fuzzy seasonal index into the fuzzy LSTM model, which effectively extends the traditional LSTM technology. The FSLSTM, LSTM, autoregressive integrated moving average (ARIMA), generalized regression neural network (GRNN), back propagation neural network (BPNN), least square support vector regression (LSSVR), and seasonal autoregressive integrated moving average (SARIMA) models are then used to forecast monthly wind power output datasets in Taiwan. The empirical results indicate that FSLSTM can obtain better performance in terms of forecasting accuracy than the other methods. Therefore, FSLSTM can efficiently provide credible prediction values for Taiwan’s wind power output datasets.


2019 ◽  
Author(s):  
Dimitri Abrahamsson ◽  
June-Soo Park ◽  
Marina Sirota ◽  
Tracey Woodruff

We developed two in silico quantification methods for chemicals analyzed with capillary electrophoresis electrospray ionization-mass spectrometry (CE-ESI-MS) using machine learning - a random forest (RF) and an artificial neural network (ANN). The algorithms can be used to predict chemical concentrations based on the chemicals’ relative response factors (RRFs) and their physicochemical properties. The RF and ANN predicted the measured concentrations with a mean absolute error of 0.2 log units and a coefficient of determination (R2) of about 0.85 for the testing set.


2019 ◽  
Vol 11 (4) ◽  
pp. 987 ◽  
Author(s):  
Sana Mujeeb ◽  
Nadeem Javaid ◽  
Manzoor Ilahi ◽  
Zahid Wadud ◽  
Farruh Ishmanov ◽  
...  

This paper focuses on analytics of an extremely large dataset of smart grid electricity price and load, which is difficult to process with conventional computational models. These data are known as energy big data. The analysis of big data divulges the deeper insights that help experts in the improvement of smart grid’s (SG) operations. Processing and extracting of meaningful information from data is a challenging task. Electricity load and price are the most influential factors in the electricity market. For improving reliability, control and management of electricity market operations, an exact estimate of the day ahead load is a substantial requirement. Energy market trade is based on price. Accurate price forecast enables energy market participants to make effective and most profitable bidding strategies. This paper proposes a deep learning-based model for the forecast of price and demand for big data using Deep Long Short-Term Memory (DLSTM). Due to the adaptive and automatic feature learning mechanism of Deep Neural Network (DNN), the processing of big data is easier with LSTM as compared to the purely data-driven methods. The proposed model was evaluated using well-known real electricity markets’ data. In this study, day and week ahead forecasting experiments were conducted for all months. Forecast performance was assessed using Mean Absolute Error (MAE) and Normalized Root Mean Square Error (NRMSE). The proposed Deep LSTM (DLSTM) method was compared to traditional Artificial Neural Network (ANN) time series forecasting methods, i.e., Nonlinear Autoregressive network with Exogenous variables (NARX) and Extreme Learning Machine (ELM). DLSTM outperformed the compared forecasting methods in terms of accuracy. Experimental results prove the efficiency of the proposed method for electricity price and load forecasting.


Author(s):  
Victor Aquiles Alencar ◽  
Lucas Ribeiro Pessamilio ◽  
Felipe Rooke ◽  
Heder Soares Bernardino ◽  
Alex Borges Vieira

AbstractCarsharing is ana lternative to urban mobility that has been widely adopted recently. This service presents three main business models: two of these models base their services on stations while the remainder, the free-floating service, is free of fixed stations. Despite the notable advantages of carsharing, this service is prone to several problems, such as fleet imbalance due to the variance of the daily demand in large urban centers. Forecasting the demand for the service is a key task to deal with this issue. In this sense, in this work, we analyze the use of well-known techniques to forecast a carsharing service demand. More in deep, we evaluate the use of the Long Short-Term Memory (LSTM) and Prophet techniques to predict the demand of three real carsharing services. Moreover, we also evaluate seven state-of-the-art forecasting models on a given free-floating carsharing service, highlighting the potentials of each technique. In addition to historical carsharing service data, we have also used climatic series to enhance the forecasting. Indeed, the results of our analysis have shown that the addition of meteorological data improved the models’ performance. In this case, the mean absolute error of LSTM may fall by half, when using the climate data. When considering the free-floating carsharing service, and prediction for the short-term (i.e., 12 hours), the boosting algorithms (e.g. XGBoost, Catboost, and LightGBM) present superior performance, with less than 20% of mean absolute error when compared to the next best-ranked model (Prophet). On the other hand, Prophet performed better for predictions conducted on long-term periods.


Sign in / Sign up

Export Citation Format

Share Document