scholarly journals Water and Energy Efficiency Improvement of Steel Wire Manufacturing by Circuit Modelling and Optimisation

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 223 ◽  
Author(s):  
Muriel Iten ◽  
Miguel Oliveira ◽  
Diogo Costa ◽  
Jochen Michels

Industrial water circuits (IWC) are frequently neglected as they are auxiliary circuits of industrial processes, leading to a missing awareness of their energy- and water-saving potential. Industrial sectors such as steel, chemicals, paper and food processing are notable in their water-related energy requirements. Improvement of energy efficiency in industrial processes saves resources and reduces manufacturing costs. The paper presents a cooling IWC of a steel wire processing plant in which steel billets are transformed into wire. The circuit was built in object-oriented language in OpenModelica and validated with real plant data. Several improvement measures have been identified and an optimisation methodology has been proposed. A techno-economic analysis has been carried out to estimate the energy savings and payback time for the proposed improvement measures. The suggested measures allow energy savings up to 29% in less than 3 years’ payback time and water consumption savings of approximately 7.5%.

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 699 ◽  
Author(s):  
Miguel C. Oliveira ◽  
Muriel Iten ◽  
Henrique A. Matos ◽  
Jochen Michels

Water–energy nexus has been recognized as an important and challenging issue, namely in industry. This is due to industry reforms, increasing demand, and climate change. This concept focuses on the link between energy and water infrastructure. Overall, there is limited understanding of the nature of this link, as it is assumed that water is not a threat to the energy sector or an influence of the electricity to the water resources. This work aims to present and evaluate case studies related to typical industrial water circuits. These circuits represent some of the most relevant industrial sectors in terms of water–energy nexus such as: steel industry, chemical industry, paper and pulp industry, and food industry. Moreover, these sectors also cover typical industrial water circuits, namely: cooling circuit, gas washing circuit, water treatment circuit, transportation circuit, and quenching circuit. The circuits have firstly been assembled in OpenModelica software considering the equipment and physical layout of each circuit. According to their actual operation conditions, the energy and water consumption have been estimated. Furthermore, water and energy efficiency improvement measures have been proposed and implemented into the assembled models. This enabled a techno-economic assessment based on the implementation of the improvement measures. In order to contextualise these results into the industrial trends, the achieved water and energy savings are projected into potential national and sectorial savings considering the current levels of water and energy demand for each sector.


2008 ◽  
pp. 55-61 ◽  
Author(s):  
Bojana Prodanic ◽  
Aleksandar Jokic ◽  
Jelena Markovic ◽  
Zoltan Zavargo

General trend of free trade at the regional level as well as in the direction of European Union has motivated sugar factories located in Serbia to invest into technologies that are more efficient in order to make their products more competitive in the markets of Europe. Until 2005, the project of energy efficiency improvement in Serbian sugar factories was conducted in Crvenka and Zabalj. Now, they have energy consumption around 1 MJ/kg beet, in contrast to the previous consumption of 1.2 up to 1.5 MJ/kg beet. Further improvements are possible but investments would be high. A result of measurements taken during 2006, after the sugar factory "Donji Srem" - Pecinci was reconstructed showed that a considerable saving has been achieved. The first set of measurements showed that the energy consumption was 1.01 MJ/kg beet, which was 20% higher than intended, but at the same time energy savings were about 30% lower with respect to the values before the reconstruction.


2012 ◽  
Vol 524-527 ◽  
pp. 3101-3106
Author(s):  
Li Li ◽  
Xue Wen Lin

Since the view that energy efficiency improvement would increase rather than reduce energy consumption, so-called rebound effect, was put forward and has been the focus that is encouraging a fierce debate within mainstream economics. This paper tries to introduce an improved estimation model by efficiency share decomposed from energy intensity, based on IPAT equation to estimate the rebound effect of three major regions in Guangdong, together with redistricting Guangdong applying hierarchical clustering analysis. The result shows the average rebound effect of low-intensity high-yield area, high-intensity low-yield area, and low-intensity low-yield area, is 17.91%, 10.82% and 8.10%, correspondingly. While the empirical study provides support of existence of rebound effect, it does suggest we should not only rely on improving energy efficiency, but also using market instruments such as resources taxes, to reinforce the energy savings.


2018 ◽  
Vol 10 (2) ◽  
pp. A250 ◽  
Author(s):  
J. M. H. Elmirghani ◽  
T. Klein ◽  
K. Hinton ◽  
L. Nonde ◽  
A. Q. Lawey ◽  
...  

2020 ◽  
Vol 57 (6) ◽  
pp. 40-52
Author(s):  
M. Upitis ◽  
I. Amolina ◽  
I. Geipele ◽  
N. Zeltins

AbstractDirective (EU) 2018/2002 of the European Parliament and of the Council amending Directive 2012/27/EU on energy efficiency sets a target of 32.5 % energy efficiency to be achieved by 2030, with a possible upward revision in 2023. The directive also stipulates that the obligation to achieve annual energy savings must continue to be met after 2020. In addition, a revised directive on the energy performance of buildings was adopted in May 2018. It includes measures to speed up the renovation of buildings and the transition to more energy-efficient systems, as well as to improve the energy efficiency of new buildings, thus using smart energy management systems [1].Buildings consume the most energy and have the greatest energy saving potential. They are therefore crucial to achieving the European Union’s energy saving targets. The EU allocated around 14 billion EUR to improve the energy efficiency of buildings in the period of 2014–2020, of which 4.6 billion EUR was intended for residential buildings. In addition, the Member States have earmarked 5.4 billion EUR of public co-financing for the improvement of all types of buildings, of which around 2 billion EUR is allocated to residential buildings.Multi-apartment residential buildings in Latvia are in a technically unsatisfactory condition. In Latvia, the service life of multi-apartment residential buildings has been artificially extended. In addition, there is also the problem of reduced construction quality. Housing problems affect all layers of society, but they are most acute for low- and middle-income people.The aim of the research is to study, using the co-financing of the European Union Structural Funds, the activities performed during the renovation process of multi-apartment residential buildings in Latvia and to identify the shortcomings.


2014 ◽  
Vol 1051 ◽  
pp. 641-644
Author(s):  
Foengfurad Mungtavesinsuk ◽  
Hung Wen Lin ◽  
Kris Wonggasem

The textile industry plays a very important role and this industry is one of the most complicated manufacturing industries. All producing machine occupies almost 50% energy end-use. Hence, improving energy efficiency should be a primary concern for textile factory. This study aims to energy efficiency verification in Thailand textile factory. By real-time data collection for all equipment in factory, and use simulation tool to analyze whole year energy end-use, some of useful improvement strategies and energy saving percentage could be knew. Via change the subsystems, like lighting and insulation material for example, the total energy saving could at least to 10% with 2 years payback time. It will be a good start doing energy saving in textile industry in Thailand.


2019 ◽  
Vol 112 ◽  
pp. 04007
Author(s):  
Mircea Scripcariu ◽  
Ioan Sevastian Bitir-Istrate ◽  
Cristian Gheorghiu ◽  
Aida Maria Neniu

Energy audits are used world-wide for developing energy efficiency projects. Industrial consumers have complex energy supply, generation and distribution networks and a variety of energy use installations. Romanian industrial companies became more interested in the last years in implementing Energy Management Systems in accordance with ISO 50001 standard. This paper presents a comparison of using the current way of developing energy audits and the concepts provided by the ISO group of standards, by quantifying the environmental impact reduction generated by each methodology. Authors pointed out that current legislation does not fully match the rigors of the ISO 50001 group of standards when evaluating the Energy Baseline (EB), the Energy Performance Indicators (EPI) or the Energy Performance Improvement Actions (EPIA), thus leading to a lower global energy efficiency improvement in the hypothesis of implementing all the recommended EPIAs [1]. Identifying and developing energy efficiency measures following the recommendations of the energy management and energy savings group of standards may be more consistent and less risky for the industrial company, which in turn can lead to an overall improvement of the Carbon Footprint [2].


2020 ◽  
Vol 12 (18) ◽  
pp. 7603
Author(s):  
Nuno Costa ◽  
Paulo Fontes

Some (non)manufacturing industries are becoming more energy efficient, but many of them are losing cost-effective energy-savings opportunities, namely, by lack of knowledge or underestimation of good engineering and management practices as well as guidance on techniques or tools for that purpose. This study points out that Design of Experiments is a tool that cannot be ignored by managers and other technical staff, namely, by those who have the responsibility to eliminate energy waste and promote energy-efficiency improvement in industry, mainly in energy-intensive manufacturing industries. A review on Design of Experiments for physical and simulation experiments, supported on carefully selected references, is provided, since process and product improvement at the design and manufacturing stages increasingly rely on virtual tests and digital simulations. However, the expense of running experiments in complex computer models is still a relevant issue, despite advances in computer hardware and software capabilities. Here, experiments were statistically designed, and several easy-to-implement yet effective data analysis methods were employed for identifying the variables that must be measured with more accurate devices and methods to better estimate the energy efficiency or improve it in a billets reheating furnace. A simulation model of this type of furnace was used to run the experiments and the results analysis shows that variables with practical effect on the furnace’s energy efficiency are the percentage of oxygen in the combustion gases, the fuel flow in the burners, and the combustion air temperature.


Author(s):  
Piyanut Saengsikhiao ◽  
Juntakan Taweekun

This research will be presenting energy efficiency improvement options by retrofitting doors for open refrigeration systems in Central Thailand supermarkets that open during the daytime (06:00 am – 06:00 pm), and are closed during the night-time (00:00 am – 6:00 am). The materials and methods used consisted of 15 open refrigeration cabinets with 82 retrofitted doors supported by 41 frames, with the temperature set at medium. The power consumption was indicated in kW, kWh through a power meter data logger for analysis and summarization. The investment required was €21,694 /store, while the payback period of this research was determined to be at 14 months. The cost of energy savings was found to be within a period of 1.1 years, at the rate of 192,220 kWh/year or €18,503 annually. The retrofitted doors is expected to reduce the cooling load and over-burdening of the compressor. The research found that the most viable solution was to use a digital semi-hermetic compressor that can operate in unload and full load status, that was being controlled by the evaporator temperature (TEV) which was set at -10 degree, the condenser temperature (TCD) set at 38 degrees, and the superheat temperature (TSH) at 10 degrees. In the unload status, the power consumption of the digital semi hermetic compressor will decrease by 50%, which has a significant impact for energy savings and is important for night-time when low cooling load is required whereby the compressor’s multiple start–stop cycles are not required. The investment for a digital semi-hermetic compressor was determined to be €7,800/store, and is able to yield energy savings of up to 26,890 kWh/year, or €2,589 annually, with a payback period of 2.9 years.


Sign in / Sign up

Export Citation Format

Share Document