scholarly journals Effects of Producer and Transmission Reliability on the Sustainability Assessment of Power System Networks

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 546 ◽  
Author(s):  
Jose Vargas-Jaramillo ◽  
Jhon Montanez-Barrera ◽  
Michael von Spakovsky ◽  
Lamine Mili ◽  
Sergio Cano-Andrade

Details are presented of the development and incorporation of a generation and transmission reliability approach in an upper-level sustainability assessment framework for power system planning. This application represents a quasi-stationary, multiobjective optimization problem with nonlinear constraints, load uncertainties, stochastic effects for renewable energy producers, and the propagation of uncertainties along the transmission lines. The Expected Energy Not Supplied (EENS) accounts for generation and transmission reliability and is based on a probabilistic as opposed to deterministic approach. The optimization is developed for three scenarios. The first excludes uncertainties in the load demand, while the second includes them. The third scenario accounts not only for these uncertainties, but also for the stochastic effects related to wind and photovoltaic producers. The sustainability-reliability approach is applied to the standard IEEE Reliability Test System. Results show that using a Mixture of Normals Approximation (MONA) for the EENS formulation makes the reliability analysis simpler, as well as possible within a large-scale optimization. In addition, results show that the inclusion of renewable energy producers has some positive impact on the optimal synthesis/design of power networks under sustainability considerations. Also shown is the negative impact of renewable energy producers on the reliability of the power network.

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5929
Author(s):  
Hyuk-Il Kwon ◽  
Yun-Sung Cho ◽  
Sang-Min Choi

Renewable energy generation capacity in Korea is expected to reach about 63.8 GW by 2030 based on calculations using values from a power plan survey (Korea’s renewable energy power generation project plan implemented in September 2017) and the “3020” implementation plan prescribed in the 8th Basic Plan for Long-Term Electricity Supply and Demand that was announced in 2017. In order for the electrical grid to accommodate this capacity, an appropriate power system reinforcement plan is critical. In this paper, a variety of scenarios are constructed involving renewable energy capacity, interconnection measures and reinforcement measures. Based on these scenarios, the impacts of large-scale renewable energy connections on the future power systems are analyzed and a reinforcement plan is proposed based on the system assessment results. First, the scenarios are categorized according to their renewable energy interconnection capacity and electricity supply and demand, from which a database is established. A dynamic model based on inverter-based resources is applied to the scenarios here. The transmission lines, high-voltage direct current and flexible alternating current transmission systems are reinforced to increase the stability and capabilities of the power systems considered here. Reinforcement measures are derived for each stage of renewable penetration based on static and dynamic analysis processes. As a result, when large-scale renewable energy has penetrated some areas in the future in Korean power systems, the most stable systems could be optimally configured by applying interconnection measure two and reinforcement measure two as described here. To verify the performance of the proposed methodology, in this paper, comprehensive tests are performed based on predicted large-scale power systems in 2026 and 2031. Database creation and simulation are performed semi-automatically here using Power System Simulator for Engineering (PSS/E) and Python.


2014 ◽  
Vol 672-674 ◽  
pp. 246-250 ◽  
Author(s):  
Kui Luo ◽  
Wen Hui Shi ◽  
Hao Zha

Wind power planning towards large-scale accommodation of wind power while satisfying technical and economical constraints, it should consider power system adaptability and economy when giving full play to the wind benefits. This paper considers the relationship among wind power accommodation, construction of transmission lines and conventional unit operation costs and proposes an economic and reasonable wind power planning approach aiming at accommodating wind power efficiently and effectively. Combined the constrains of peak load regulation and network construction together, optimal wind power planning model is established, and based on the system operation simulation, a series of wind power planning evaluation index are obtained, which can estimate the wind power planning scheme from multiple angles. Finally, the feasibility and reasonability of the proposed planning approach has been verified by a numerical test system.


Author(s):  
Geoffrey Jones

This chapter examines the scaling and diffusion of green entrepreneurship between 1980 and the present. It explores how entrepreneurs and business leaders promoted the idea that business and sustainability were compatible. It then examines the rapid growth of organic foods, natural beauty, ecological architecture, and eco-tourism. Green firms sometimes grew to a large scale, such as the retailer Whole Foods Market in the United States. The chapter explores how greater mainstreaming of these businesses resulted in a new set of challenges arising from scaling. Organic food was now transported across large distances causing a negative impact on carbon emissions. More eco-tourism resulted in more air travel and bigger airports. In other industries scaling had a more positive impact. Towns were major polluters, so more ecological buildings had a positive impact.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2301
Author(s):  
Yun-Sung Cho ◽  
Yun-Hyuk Choi

This paper describes a methodology for implementing the state estimation and enhancing the accuracy in large-scale power systems that partially depend on variable renewable energy resources. To determine the actual states of electricity grids, including those of wind and solar power systems, the proposed state estimation method adopts a fast-decoupled weighted least square approach based on the architecture of application common database. Renewable energy modeling is considered on the basis of the point of data acquisition, the type of renewable energy, and the voltage level of the bus-connected renewable energy. Moreover, the proposed algorithm performs accurate bad data processing using inner and outer functions. The inner function is applied to the largest normalized residue method to process the bad data detection, identification and adjustment. While the outer function is analyzed whether the identified bad measurements exceed the condition of Kirchhoff’s current law. In addition, to decrease the topology and measurement errors associated with transformers, a connectivity model is proposed for transformers that use switching devices, and a transformer error processing technique is proposed using a simple heuristic method. To verify the performance of the proposed methodology, we performed comprehensive tests based on a modified IEEE 18-bus test system and a large-scale power system that utilizes renewable energy.


2019 ◽  
Vol 11 (16) ◽  
pp. 4424 ◽  
Author(s):  
Chunning Na ◽  
Huan Pan ◽  
Yuhong Zhu ◽  
Jiahai Yuan ◽  
Lixia Ding ◽  
...  

At present time, China’s power systems face significant challenges in integrating large-scale renewable energy and reducing the curtailed renewable energy. In order to avoid the curtailment of renewable energy, the power systems need significant flexibility requirements in China. In regions where coal is still heavily relied upon for generating electricity, the flexible operations of coal power units will be the most feasible option to face these challenges. The study first focused on the reasons why the flexible operation of existing coal power units would potentially promote the integration of renewable energy in China and then reviewed the impacts on the performance levels of the units. A simple flexibility operation model was constructed to estimate the integration potential with the existing coal power units under several different scenarios. This study’s simulation results revealed that the existing retrofitted coal power units could provide flexibility in the promotion of the integration of renewable energy in a certain extent. However, the integration potential increment of 20% of the rated power for the coal power units was found to be lower than that of 30% of the rated power. Therefore, by considering the performance impacts of the coal power units with low performances in load operations, it was considered to not be economical for those units to operate at lower than 30% of the rated power. It was believed that once the capacity share of the renewable energy had achieved a continuously growing trend, the existing coal power units would fail to meet the flexibility requirements. Therefore, it was recommended in this study that other flexible resources should be deployed in the power systems for the purpose of reducing the curtailment of renewable energy. Furthermore, based on this study’s obtained evidence, in order to realize a power system with high proportions of renewable energy, China should strive to establish a power system with adequate flexible resources in the future.


2020 ◽  
Vol 6 ◽  
pp. 1597-1603
Author(s):  
Lei Liu ◽  
Tomonobu Senjyu ◽  
Takeyoshi Kato ◽  
Abdul Motin Howlader ◽  
Paras Mandal ◽  
...  

2022 ◽  
Author(s):  
Piotr Długosz

Abstract: Background: All over the world, the negative impact of the Covid-19 pandemic on children and adolescents’ mental health is observed. The conducted research aims to verify whether returning to schools, to the education inside the classroom in the company of their peers, improved or undermined the students’ mental health. Metods: The study was carried out on a sample of students inhabiting rural areas in a borderland region. The research sample was collected using purposive sampling and consisted of 552 respondents from 7th and 8th grades of primary school. An auditorium questionnaire was used to gather the research material. Results: Three months after returning to school, the students are in a bad mental condition. 61% of the respondents are satisfied with their lives, 52% of the respondents show symptoms of depression measured with the WHO-5 index, whereas 85% of them have average and high stress levels as measured with the PSSC scale. Higher levels of mental disorders was observed among females, the students inhabiting villages and evaluating their financial status as worse. Conclusions: Returning to schools failed to have a positive impact on the students’ mental health. Disorders occurring at a large scale will have a negative influence on the students’ performance and hinder their re-adaptation to school. Educational authorities shall immediately provide the students with support and monitor the situation in the next months.


2020 ◽  
Vol 29 ◽  
pp. 100482 ◽  
Author(s):  
Partha Das ◽  
Parul Mathuria ◽  
Rohit Bhakar ◽  
Jyotirmay Mathur ◽  
Amit Kanudia ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1697 ◽  
Author(s):  
Lingling Li ◽  
Hengyi Li ◽  
Ming-Lang Tseng ◽  
Huan Feng ◽  
Anthony S. F. Chiu

This study constructs a novel virtual synchronous generator system based on a transfer function, and optimizes the parameters of the model by using the improved whale algorithm to improve the frequency control ability of virtual synchronous generator. Virtual synchronous generator technology helps to solve the problem that the integration of large-scale renewable energy generation into the power system leads to the deterioration of system frequency stability. It can maintain the symmetry of grid-connected scale and system stability. The virtual synchronous generator technology makes the inverter to have the inertia and damping characteristics of a synchronous generator. The inverter has the inertia characteristics and damps to reduce the frequency instability of high penetration renewable energy power system. The improved whale algorithm is efficient to find the best combination of control parameters and the effectiveness of the algorithm is verified by microgrid and power system. The results show that the proposed frequency coordination control scheme suppresses the frequency deviation of power system and keep the system frequency in a reasonable range.


Sign in / Sign up

Export Citation Format

Share Document