scholarly journals A Study on Optimal Power System Reinforcement Measures Following Renewable Energy Expansion

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5929
Author(s):  
Hyuk-Il Kwon ◽  
Yun-Sung Cho ◽  
Sang-Min Choi

Renewable energy generation capacity in Korea is expected to reach about 63.8 GW by 2030 based on calculations using values from a power plan survey (Korea’s renewable energy power generation project plan implemented in September 2017) and the “3020” implementation plan prescribed in the 8th Basic Plan for Long-Term Electricity Supply and Demand that was announced in 2017. In order for the electrical grid to accommodate this capacity, an appropriate power system reinforcement plan is critical. In this paper, a variety of scenarios are constructed involving renewable energy capacity, interconnection measures and reinforcement measures. Based on these scenarios, the impacts of large-scale renewable energy connections on the future power systems are analyzed and a reinforcement plan is proposed based on the system assessment results. First, the scenarios are categorized according to their renewable energy interconnection capacity and electricity supply and demand, from which a database is established. A dynamic model based on inverter-based resources is applied to the scenarios here. The transmission lines, high-voltage direct current and flexible alternating current transmission systems are reinforced to increase the stability and capabilities of the power systems considered here. Reinforcement measures are derived for each stage of renewable penetration based on static and dynamic analysis processes. As a result, when large-scale renewable energy has penetrated some areas in the future in Korean power systems, the most stable systems could be optimally configured by applying interconnection measure two and reinforcement measure two as described here. To verify the performance of the proposed methodology, in this paper, comprehensive tests are performed based on predicted large-scale power systems in 2026 and 2031. Database creation and simulation are performed semi-automatically here using Power System Simulator for Engineering (PSS/E) and Python.

2019 ◽  
Vol 11 (16) ◽  
pp. 4424 ◽  
Author(s):  
Chunning Na ◽  
Huan Pan ◽  
Yuhong Zhu ◽  
Jiahai Yuan ◽  
Lixia Ding ◽  
...  

At present time, China’s power systems face significant challenges in integrating large-scale renewable energy and reducing the curtailed renewable energy. In order to avoid the curtailment of renewable energy, the power systems need significant flexibility requirements in China. In regions where coal is still heavily relied upon for generating electricity, the flexible operations of coal power units will be the most feasible option to face these challenges. The study first focused on the reasons why the flexible operation of existing coal power units would potentially promote the integration of renewable energy in China and then reviewed the impacts on the performance levels of the units. A simple flexibility operation model was constructed to estimate the integration potential with the existing coal power units under several different scenarios. This study’s simulation results revealed that the existing retrofitted coal power units could provide flexibility in the promotion of the integration of renewable energy in a certain extent. However, the integration potential increment of 20% of the rated power for the coal power units was found to be lower than that of 30% of the rated power. Therefore, by considering the performance impacts of the coal power units with low performances in load operations, it was considered to not be economical for those units to operate at lower than 30% of the rated power. It was believed that once the capacity share of the renewable energy had achieved a continuously growing trend, the existing coal power units would fail to meet the flexibility requirements. Therefore, it was recommended in this study that other flexible resources should be deployed in the power systems for the purpose of reducing the curtailment of renewable energy. Furthermore, based on this study’s obtained evidence, in order to realize a power system with high proportions of renewable energy, China should strive to establish a power system with adequate flexible resources in the future.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 584
Author(s):  
Chiara Magni ◽  
Sylvain Quoilin ◽  
Alessia Arteconi

Flexibility is crucial to enable the penetration of high shares of renewables in the power system while ensuring the security and affordability of the electricity dispatch. In this regard, heat–electricity sector coupling technologies are considered a promising solution for the integration of flexible devices such as thermal storage units and heat pumps. The deployment of these devices would also enable the decarbonization of the heating sector, responsible for around half of the energy consumption in the EU, of which 75% is currently supplied by fossil fuels. This paper investigates in which measure the diffusion of district heating (DH) coupled with thermal energy storage (TES) units can contribute to the overall system flexibility and to the provision of operating reserves for energy systems with high renewable penetration. The deployment of two different DH supply technologies, namely combined heat and power units (CHP) and large-scale heat pumps (P2HT), is modeled and compared in terms of performance. The case study analyzed is the future Italian energy system, which is simulated through the unit commitment and optimal dispatch model Dispa-SET. Results show that DH coupled with heat pumps and CHP units could enable both costs and emissions related to the heat–electricity sector to be reduced by up to 50%. DH systems also proved to be a promising solution to grant the flexibility and resilience of power systems with high shares of renewables by significantly reducing the curtailment of renewables and cost-optimally providing up to 15% of the total upward reserve requirements.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 627
Author(s):  
Xiangying Tang ◽  
Yan Hu ◽  
Zhanpeng Chen ◽  
Guangzeng You

The development of renewable energy represented by wind, photovoltaic and hydropower has increased the uncertainty of power systems. In order to ensure the flexible operation of power systems with a high proportion of renewable energy, it is necessary to establish a multi-scenario power system flexibility evaluation method. First, this study uses a modified k-means algorithm to cluster operating scenarios of renewable energy and load to obtain several typical scenarios. Then, flexibility evaluation indices are proposed from three perspectives, including supply and demand balance of the zone, power flow distribution of the zone and transmission capacity between zones. Next, to calculate the flexibility evaluation indices of each scenario—and according to the occurrence probability of each scenario—we multiplied the indices of each scenario by the scenario occurrence probability to obtain comprehensive evaluation indices of all scenarios. Based on the actual historical output data of renewable energy and load of a southern power system in China, a flexibility evaluation was performed on the modified IEEE 14 system and modified IEEE 39 system. The results show that the proposed clustering method and flexibility indices can effectively reflect the flexibility status of the power system.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1849 ◽  
Author(s):  
Yumiko Iwafune ◽  
Kazuhiko Ogimoto ◽  
Hitoshi Azuma

We propose a model for the integration of electric vehicles (EVs) into the grid power system in Japan. The potential of the switchover from conventional vehicles to EVs and the incurred charging loads for the EV fleet were evaluated based on the results of a Japanese road traffic census. Furthermore, an EV battery operation model was incorporated into the production cost analysis model, which is capable of determining the optimal electricity supply and demand, considering the existing interconnector power flows. The potential economic and environmental contributions of EV charge and discharge controls, with the ultimate goal of realizing the introduction of a massive renewable energy source in the future, were also evaluated. We found that EVs can greatly contribute to expanding the use of renewable energy and reducing system cost by charging and discharging not only at the owner’s home but also at his/her workplace.


2013 ◽  
Vol 860-863 ◽  
pp. 2088-2094 ◽  
Author(s):  
Pan Yu Fang ◽  
Xue Feng Fan ◽  
Jie Ren ◽  
Yi Xia ◽  
De Zhi Chen ◽  
...  

Close attention has been paid to the power generation using renewable energy such as the widespread energy and solar energy. After the integration of large-scale renewable energy, more uncertain factors are brought to the power system, which badly influences systems planning and operation. The wind power, photovoltaic power and load are random but correlative, therefore, it is more logical to study the influence exerted by the integration of renewable energy when considering the uncertainty and it is meaningful to the power systems planning and operation. Based on the summary and survey of previous studies, the technical route of power system analysis concerning the correlation of wind power, photovoltaic power and load is proposed in this paper and some key technologies are discussed. The study of correlation offers valuable analysis and recommendations to the connection of large-scale wind and solar power base.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 546 ◽  
Author(s):  
Jose Vargas-Jaramillo ◽  
Jhon Montanez-Barrera ◽  
Michael von Spakovsky ◽  
Lamine Mili ◽  
Sergio Cano-Andrade

Details are presented of the development and incorporation of a generation and transmission reliability approach in an upper-level sustainability assessment framework for power system planning. This application represents a quasi-stationary, multiobjective optimization problem with nonlinear constraints, load uncertainties, stochastic effects for renewable energy producers, and the propagation of uncertainties along the transmission lines. The Expected Energy Not Supplied (EENS) accounts for generation and transmission reliability and is based on a probabilistic as opposed to deterministic approach. The optimization is developed for three scenarios. The first excludes uncertainties in the load demand, while the second includes them. The third scenario accounts not only for these uncertainties, but also for the stochastic effects related to wind and photovoltaic producers. The sustainability-reliability approach is applied to the standard IEEE Reliability Test System. Results show that using a Mixture of Normals Approximation (MONA) for the EENS formulation makes the reliability analysis simpler, as well as possible within a large-scale optimization. In addition, results show that the inclusion of renewable energy producers has some positive impact on the optimal synthesis/design of power networks under sustainability considerations. Also shown is the negative impact of renewable energy producers on the reliability of the power network.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3566 ◽  
Author(s):  
Quanhui Che ◽  
Suhua Lou ◽  
Yaowu Wu ◽  
Xiangcheng Zhang ◽  
Xuebin Wang

With the grid-connected operation of large-scale wind farms, the contradiction between supply and demand of power systems is becoming more and more prominent. The introduction of multiple types of flexible resources provides a new technical means for improving the supply–demand matching relationship of system flexibility and promoting wind power consumption. In this paper, multi-type flexible resources made up of deep peak regulation of thermal units, demand response, and energy storage were utilized to alleviate the peak regulation pressure caused by large-scale wind power integration. Based on current thermal plant deep peak regulation technology, a three-phase peak regulation cost model of thermal power generation considering the low load fatigue life loss and oil injection cost of the unit was proposed. Additionally, from the perspective of supply–demand balance of power system flexibility, the flexibility margin index of a power system containing source-load-storage flexible resources was put forward to assess the contribution from each flexibility provider to system flexibility. Moreover, an optimal dispatching model of a multi-energy power system with large-scale wind power and multi-flexible resources was constructed, aimed at the lowest total dispatching cost of the whole scheduling period. Finally, the model proposed in this paper was validated by a modified RTS96 system, and the effects of different flexibility resources and wind power capacity on the optimal scheduling results were discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lijuan Li ◽  
Yiwei Zeng ◽  
Jie Chen ◽  
Yue Li ◽  
Hai Liu ◽  
...  

With the increase of complexity of the power system structure and operation mode, the risk of large-scale power outage accidents rises, which urgently need an accuracy algorithm for identifying vulnerabilities and mitigating risks. Aiming at this, the improved DebtRank (DR) algorithm is modified to adapt to the property of the power systems. The overloading state of the transmission lines plays a notable role of stable operation of the power systems. An electrical DR algorithm is proposed to incorporate the overloading state to the identification of vulnerable lines in the power systems in this article. First, a dual model of power system topology is established, the nodes of which represent the lines in the power systems. Then, besides the normal state and failure state having been considered, the definition of the overloading state is also added, and the line load and network topology are considered in the electrical DR algorithm to identify vulnerable lines. Finally, the correctness and reasonability of the vulnerable lines of the power systems identified by the electrical DR algorithm are proved by the comparative analysis of cascade failure simulation, showing its better advantages in vulnerability assessment of power systems.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5490 ◽  
Author(s):  
Chloi Syranidou ◽  
Jochen Linssen ◽  
Detlef Stolten ◽  
Martin Robinius

The future European power system is projected to rely heavily on variable renewable energy sources (VRES), primarily wind and solar generation. However, the difficulties inherent to storing the primary energy of these sources is expected to pose significant challenges in terms of their integration into the system. To account for the high variability of renewable energy sources VRES, a novel pan-European dispatch model with high spatio-temporal resolution including load shifting is introduced here, providing highly detailed information regarding renewable energy curtailments for all Europe, typically underestimated in studies of future systems. which also includes modeling of load shifting. The model consists of four separate levels with different approaches for modeling thermal generation flexibility, storage units and demand as well as with spatial resolutions and generation dispatch formulations. Applying the developed model for the future European power system follows the results of corresponding transmission expansion planning studies, which are translated into the desired high spatial resolution. The analysis of the “large scale-RES” scenario for 2050 shows considerable congestion between northern and central Europe, which constitutes the primary cause of VRES curtailments of renewables. In addition, load shifting is shown to mostly improve the integration of solar energy into the system and not wind, which constitutes the dominant energy source for this scenario. Finally, the analysis of the curtailments time series using ideal converters shows that the best locations for their exploitation can be found in western Ireland and western Denmark.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2301
Author(s):  
Yun-Sung Cho ◽  
Yun-Hyuk Choi

This paper describes a methodology for implementing the state estimation and enhancing the accuracy in large-scale power systems that partially depend on variable renewable energy resources. To determine the actual states of electricity grids, including those of wind and solar power systems, the proposed state estimation method adopts a fast-decoupled weighted least square approach based on the architecture of application common database. Renewable energy modeling is considered on the basis of the point of data acquisition, the type of renewable energy, and the voltage level of the bus-connected renewable energy. Moreover, the proposed algorithm performs accurate bad data processing using inner and outer functions. The inner function is applied to the largest normalized residue method to process the bad data detection, identification and adjustment. While the outer function is analyzed whether the identified bad measurements exceed the condition of Kirchhoff’s current law. In addition, to decrease the topology and measurement errors associated with transformers, a connectivity model is proposed for transformers that use switching devices, and a transformer error processing technique is proposed using a simple heuristic method. To verify the performance of the proposed methodology, we performed comprehensive tests based on a modified IEEE 18-bus test system and a large-scale power system that utilizes renewable energy.


Sign in / Sign up

Export Citation Format

Share Document