scholarly journals Day-Ahead vs. Intraday—Forecasting the Price Spread to Maximize Economic Benefits

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 631 ◽  
Author(s):  
Katarzyna Maciejowska ◽  
Weronika Nitka ◽  
Tomasz Weron

Recently, a dynamic development of intermittent renewable energy sources (RES) has been observed. In order to allow for the adoption of trading contracts for unplanned events and changing weather conditions, the day-ahead markets have been complemented by intraday markets; in some countries, such as Poland, balancing markets are used for this purpose. This research focuses on a small RES generator, which has no market power and sells electricity through a larger trading company. The generator needs to decide, in advance, how much electricity is sold in the day-ahead market. The optimal decision of the generator on where to sell the production depends on the relation between prices in different markets. Unfortunately, when making the decision, the generator is not sure which market will offer a higher price. This article investigates the possible gains from utilizing forecasts of the price spread between the intraday/balancing and day-ahead markets in the decision process. It shows that the sign of the price spread can be successfully predicted with econometric models, such as ARX and probit. Moreover, our research demonstrates that the statistical measures of forecast accuracy, such as the percentage of correct sign classifications, do not necessarily coincide with economic benefits.

2017 ◽  
Vol 7 (1) ◽  
pp. 141-152 ◽  
Author(s):  
Ernesto Amores ◽  
Jesús Rodríguez ◽  
José Oviedo ◽  
Antonio de Lucas-Consuegra

AbstractAlkaline water electrolysis powered by renewable energy sources is one of the most promising strategies for environmentally friendly hydrogen production. However, wind and solar energy sources are highly dependent on weather conditions. As a result, power fluctuations affect the electrolyzer and cause several negative effects. Considering these limiting effects which reduce the water electrolysis efficiency, a novel operation strategy is proposed in this study. It is based on pumping the electrolyte according to the current density supplied by a solar PV module, in order to achieve the suitable fluid dynamics conditions in an electrolysis cell. To this aim, a mathematical model including the influence of electrode-membrane distance, temperature and electrolyte flow rate has been developed and used as optimization tool. The obtained results confirm the convenience of the selected strategy, especially when the electrolyzer is powered by renewable energies.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7525
Author(s):  
Mariusz Niekurzak

The aim of the manuscript was to present the collective results of research on the profitability of using various renewable sources in Poland with the greatest development potential. In the paper, the economic parameters of various investment projects were determined and calculated, i.e., Net Capital Value (NPV), Internal Rate of Return (IRR) and the Period of Return on Invested Capital (PBT). The economic assessment of the use of RES technologies was supplemented with the assessment of environmental benefits. The ecological criterion adopted in the study was the assessment of the potential and costs of reducing greenhouse gas emissions as a result of replacing fossil fuels with renewable energy technologies. On the basis of the constructed economic model to assess the profitability of investments, it has been shown that the analyzed projects will start to bring, depending on their type and technical specification, measurable economic benefits in the form of a reduction in the amount of energy purchased on an annual basis and environmental benefits in the form of reduction of carbon dioxide emissions to the atmosphere. Moreover, the calculations show a high potential for the use of certain renewable sources in Poland, which contributes to the fulfillment of energy and emission obligations towards the EU. The analyzes and research of the Polish energy market with the use of the presented models have shown that the project is fully economically justified and will allow investors to make a rational decision on the appropriate selection of a specific renewable energy source for their investment. The presented economic models to assess the profitability of investments in renewable energy sources can be successfully used in other countries and can also be a starting point for a discussion about the direction of energy development. Due to the lack of collective, original and up-to-date research on the domestic market, the manuscript provides the reader with the necessary knowledge regarding the legitimacy of using renewable energy sources, investment and environmental profitability.


Author(s):  
Diego Baxerias ◽  
Carol Banda

Peru has a 10-year ban on genetically modified (GM) crops and food that was approved by the Peruvian congress in 2011. Is it scientifically justified or is it a cause and effect fallacy that will make Peru fall behind in taking advantage of this technology and its potential benefits to everyone else in the economy? In order to answer this question, a literature review was carried out to examine the three most commonly used arguments against genetically modified organisms (GMOs) by farmers and all those related to the agriculture industry, reaching the conclusion that they are not one hundred percent plausible. Further research showed the multiple, potential economic benefits that GM seeds could bring about to Peru, which are related to increased labor productivity, the development of human capital, and the expansion of renewable energy sources and its implications for trade and employment – the environmental and health benefits of GMO varieties are also discussed. This paper elaborates on such matters by applying different macro and microeconomic concepts, i.e., market structures and competition, the theory of the firm, and scarcity, among others; and provides insights about the different socio-economic realities present in Peru and possible ways to improve them.


2020 ◽  
Vol 12 (15) ◽  
pp. 6084
Author(s):  
Simona-Vasilica Oprea ◽  
Adela Bâra ◽  
Ștefan Preda ◽  
Osman Bulent Tor

Electricity generation from renewable energy sources (RES) has a common feature, that is, it is fluctuating, available in certain amounts and only for some periods of time. Consuming this electricity when it is available should be a primary goal to enhance operation of the RES-powered generating units which are particularly operating in microgrids. Heavily influenced by weather parameters, RES-powered systems can benefit from implementation of sensors and fuzzy logic systems to dynamically adapt electric loads to the volatility of RES. This study attempts to answer the following question: How to efficiently integrate RES to power systems by means of sustainable energy solutions that involve sensors, fuzzy logic, and categorization of loads? A Smart Adaptive Switching Module (SASM) architecture, which efficiently uses electricity generation of local available RES by gradually switching electric appliances based on weather sensors, power forecast, storage system constraints and other parameters, is proposed. It is demonstrated that, without SASM, the RES generation is supposed to be curtailed in some cases, e.g., when batteries are fully charged, even though the weather conditions are favourable. In such cases, fuzzy rules of SASM securely mitigate curtailment of RES generation by supplying high power non-traditional storage appliances. A numerical case study is performed to demonstrate effectiveness of the proposed SASM architecture for a RES system located in Hulubești (Dâmbovița), Romania.


2020 ◽  
Vol 12 (16) ◽  
pp. 6609 ◽  
Author(s):  
Enric Julià ◽  
Fabian Tillig ◽  
Jonas W. Ringsberg

To meet the IMO goals of emissions reduction in shipping, drastic actions must be taken. Wind-assisted propulsion and renewable energy sources are today discussed frequently as realistic alternatives for future ship propulsion and energy production. This study presents a new and innovative concept of a fossil-free operated cargo ship aiming to achieve an unlimited range. The purpose of the study is to present the feasibility but also the limitations of a ship propelled and operated purely on renewable energy harnessed at sea, independent from shore-based energy sources. Aside from Flettner rotors for propulsion, the ship concept incorporates photovoltaic generators, wind turbines, and a dual-mode propeller to produce energy for the auxiliary systems and for the Flettner rotors, as well as batteries to balance the energy production and consumption. The dual-mode propeller can be used for energy generation and propulsion, thus levelling out any speed drops or peaks and thereby ensuring more reliable operation. The whole system is modelled numerically, and full ship voyages are simulated using the ship performance model ShipCLEAN. Results show feasible achieved speeds on a route with realistic weather conditions. However, negative energy balances limit the pure renewable sailing conditions. Further logistic and technical challenges are discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mariusz Niekurzak ◽  
Ewa Kubińska-Jabcoń

Background: The growing consumption is what drives the development of unsustainable energy and material-intensive production technologies that emit large quantities of pollutants into the atmosphere, water, and land. Obtaining green energy allows reduction of the interference with the environment and, consequently, fits into a sustainable energy development strategy. In order to achieve the emission targets set by the EU for Poland, it is necessary to prioritize the development of renewable energy sources (RES) technologies within the energy sector.Methods: The purpose of the study was to present the results of the research relating to the return on investment of solar collectors for single-family houses in Poland. The research was presented on the basis of the legal conditions applicable to micro installations in the light of the amendment of the RES Act, and the impact of these amendments on the aspects of such investment was determined.Results: On the basis of the constructed economic model used to assess the return on investment of increasing the area of solar collectors, it has been shown that an operating installation will bring measurable economic benefits in the form of reduction in the amount of energy purchased annually in the amount of 6,756 kWh and environmental benefits in the form of reduction of carbon dioxide emissions to the atmosphere 2.4–3.6 Mg per year. An installation subsidized under the “My Electricity” program can reach an NPV of EUR 6,000 over 20 years at a discount rate r = 0 and assuming that the electricity is EUR 0.15/kWh. If the price rises to 0.2 EUR/kWh, the NPV will be 10,000 EUR. For the analyzed installation, the investment consisting in increasing the collector area in accordance with NPV is economically effective for the absorber area in the range of 5.6–7.6 m2 and reaches the maximum value for the absorber area of 6.6 m2, while the absorber area above 7 m2 contributes to reduce the value of the economic return on investment. The obtained results have been generalized, which allows to use them in the process of selecting the size of collector area for similar installations.Conclusion: The return on investment analysis carried out in respect of a detached house allowed to demonstrate that this project is fully justified. Furthermore, pursuant to the Renewable Energy Sources Act in force in Poland, treating a small entrepreneur as a prosumer who may generally take advantage of favorable conditions for discounting the produced energy leads to very favorable possibilities of settling electricity. Considering an entrepreneur as a prosumer who may use one-off depreciation of a solar collectors installation as a fixed asset and request for VAT refund is what makes such an investment very attractive in financial terms and makes it difficult to find a safe investment alternative characterized by such a high rate of return.


DYNA ◽  
2018 ◽  
Vol 85 (207) ◽  
pp. 129-134 ◽  
Author(s):  
David Restrepo ◽  
Bonie Restrepo ◽  
Luz Adriana Trejos-Grisales

The integration of renewable energy sources to create microgrids is drawing growing interest to address current energy-related challenges around the globe. Nevertheless, microgrids must be analyzed using specialized tools that allow to conduct operation, technical and economic studies. In that regard, this paper presents a case study in which the software HOMER Energy Pro was implemented to design and analyze the performance of a microgrid. Such microgrid comprises a photovoltaic system, a wind system and a diesel plant. The parameters of the energy systems are based on information about local weather conditions available in databases. Finally, this analysis is performed under two conditions: stand-alone and grid-tied.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 205 ◽  
Author(s):  
Christopher Kath ◽  
Weronika Nitka ◽  
Tomasz Serafin ◽  
Tomasz Weron ◽  
Przemysław Zaleski ◽  
...  

Motivated by a practical problem faced by an energy trading company in Poland, we investigate the profitability of balancing intermittent generation from renewable energy sources (RES). We consider a company that buys electricity generated by a pool of wind farms and pays their owners the day-ahead system price minus a commission, then sells the actually generated volume in the day-ahead and balancing markets. We evaluate the profitability (measured by the Sharpe ratio) and market risk faced by the energy trader as a function of the commission charged and the adopted trading strategy. We show that publicly available, country-wide RES generation forecasts can be significantly improved using a relatively simple regression model and that trading on this information yields significantly higher profits for the company. Moreover, we address the issue of contract design as a key performance driver. We argue that by offering tolerance range contracts, which transfer some of the risk to wind farm owners, both parties can bilaterally agree on a suitable framework that meets individual risk appetite and profitability expectations.


2014 ◽  
Vol 624 ◽  
pp. 604-612 ◽  
Author(s):  
Rifat Alihodzic ◽  
Vera Murgul ◽  
Nikolay Vatin ◽  
Ekaterina Aronova ◽  
Vojislav Nikolić ◽  
...  

Pre-school facilities are considered to be specific buildings in the matter of construction and renovation. Space-planning features in design for pre-school facilities create special conditions for solar power use to ensure heat and power supply. The article deals with estimation of incoming solar power in reference to the surfaces oriented in different cardinal directions under the weather conditions of the city of Saint-Petersburg (Russia) and the city of Nish (Serbia). A model of how to ensure power supply for a kindergarten of the city of Nish is presented on the basis of the calculations analysis. The cases with regard to completed projects designed to use renewable energy sources in order to supply pre-school facilities with energy in other weather conditions are given herein.


2021 ◽  
Vol 144 (5) ◽  
Author(s):  
Paweł Ziółkowski ◽  
Natalia Szewczuk-Krypa ◽  
Anna Butterweck ◽  
Michał Stajnke ◽  
Stanisław Głuch ◽  
...  

Abstract Due to the current trends aiming to reduce carbon dioxide emissions by increasing the use of renewable energy sources, changes are required in the operation of coal-fired steam units. The unstable nature of renewable energy sources, depending on weather conditions, means that the amount of energy produced varies and is not always in line with peak demand. To ensure the security and stability of energy supplies in the energy system, renewable sources should cooperate with units independent of environmental conditions. With conventional steam systems, the main issue of such energy storage applied to steam turbine units is presented in this article, which, in the event of a need for a sudden reduction of the system load, prevents overloading of the boiler and turbines, improving the safety of the system. This article presents a thermodynamic model of this energy storage. A zero-dimensional (0D) model was implemented, including the operating parameters of the unit. This model directly relates to the thermodynamic parameters defined at specific points of the thermodynamic cycle. Based on the 0D model, it was shown that the process of loading the energy storage with steam leads to a load reduction of up to 4%. Conversely, when discharging the stored energy, the net power of the steam block may increase by 0.4%. For more detailed analysis, a three-dimensional (3D) nonequilibrium with including cross effects approach was applied. This approach is based on flow models, with phase transitions that determine temperature fields, densities, and phase transition in relevant space, and is used for more accurate analysis. Here, we investigate the relationship between the 0D and 3D approaches in the context of steam storage. The combination of these two approaches is the fundamental novelty of this article.


Sign in / Sign up

Export Citation Format

Share Document