scholarly journals Exploring the Introduction of Plug-In Hybrid Flex-Fuel Vehicles in Ecuador

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2244 ◽  
Author(s):  
Danilo Arcentales ◽  
Carla Silva

In Europe, diesel combustion is being banned due to the NOx and PM2.5 emissions impact on air quality. The bus sector is being electrified and is increasing its use of alternative fuels, such as natural gas (in spark ignition engines) and bioethanol (in compression ignition engines), to reduce such harmful emissions. Even if a diesel bus is equipped with selective catalytic reduction (SCR), its NOx emissions are reduced its but produces more NH3 emissions that are PM2.5 precursors. In developing countries, the air quality is still barely monitored, however, the air quality issue is well known and is being addressed. Moreover, the Ecuadorian sugar cane industry is seeking ways to increase its ethanol production. This is the ideal framework to explore a new technology and energy source in developing economies such as Ecuador. This paper explores the impact of the Ecuadorian diesel bus fleet conversion to hybrid compression ignition ethanol (HEV-ED95), hybrid diesel and plug-in hybrid flex-fuel using electricity and internal combustion engine ICE-E20 and ICE-E100. The impacts are measured in terms of final energy consumption, criteria pollutant emissions (NH3, NOx, PM2.5) and 100 years global warming potential in a well-to-wheels framework. For the tank-to-wheels data the method follows the typical values of conversion efficiency from final to useful energy (cross checked with a microsimulation model), the Tier 2 European Environmental Agency approach combined with ethanol influence on compression ratio, lower heating value, criteria emissions taken from a literature review, and well-to-tank emission factors for electricity (10–58% thermal natural gas or coal powerplant contribution), for ethanol from banana industry wastes (ED95, E20 and E100), gasoline and diesel from US databases. A discussion on whether sugarcane biorefineries are necessary is highlighted in the results. All input parameters have an uncertainty range between a minimum and a maximum and the probability for each is giving by a uniform distribution.

2020 ◽  
Author(s):  
Gabriel David Oreggioni ◽  
Fabio Monforti-Ferraio ◽  
Monica Crippa ◽  
Edwin Schaaf ◽  
Diego Guizzardi ◽  
...  

<p>During the last 30 years, the global energy sector has undergone through significant transformation, delivering a considerably larger electricity output whilst attempting to reduce air pollutant and greenhouse gas emissions. The international community has tackled this challenging dilemma by implementing different kind of policies and by encouraging several types of technological changes; including the partial replacement of coal and liquid fossil fuels by low carbon energy vectors (natural gas and renewable sources), the incorporation of more efficient power trains (natural gas fired combined cycles and supercritical coal fired plants) and the deployment of primary and secondary treatment processes for limiting air pollutant concentration in flue gases.<br>EDGAR is a unique global emission database due to its high sectorial, technological and geographical coverage; reporting greenhouse and air pollutant emission time series (1970-nowadays) in a very detailed way. Research is currently being conducted, aimed at updating the energy conversion and end of pipe processes so that the quantified emissions can better reflect the latest global and regional changes. By using EDGAR new data, it is possible to evaluate the impact of technology and regulatory frameworks on air pollutant emissions as well as to identify possible co-benefits and trade off associated with climate change mitigation policies for the energy industries.<br>This work is intended to study the drivers for greenhouse and air pollutant emission trends within this sector - both in large emitting developed and developing economies; by focusing on the role of  demand increase, on the penetration of non-fossil sources and specially on the incorporation of more efficient power islands, combustion and air pollutant abatement units.</p>


Author(s):  
A. K. Malkogianni ◽  
A. Tourlidakis ◽  
A. L. Polyzakis

Geopolitical issues give rise to problems in the smooth and continuous flow of oil and natural gas from the production countries to the consumers’ development countries. In addition, severe environmental issues such as greenhouse gas emissions, eventually guide the consumers to fuels more suitable to the present situation. Alternative fuels such as biogas and coal gas have recently become more attractive because of their benefits, especially for electricity generation. On the other hand, the use of relatively low heating value fuels has a significant effect to the performance parameters of gas turbines. In this paper, the impact of using four fuels with different heating value in the gas turbine performance is simulated. Based on the high efficiency and commercialization criteria, two types of engines are chosen to be simulated: two-shaft simple and single-shaft recuperated cycle gas turbines. The heating values of the four gases investigated, correspond to natural gas and to a series of three gases with gradually lower heating values than that of natural gas. The main conclusions drawn from this design point (DP) and off-design (OD) analysis is that, for a given TET, efficiency increases for both engines when gases with low heating value are used. On the contrary, when power output is kept constant, the use of gases with low heating value will result in a decrease of thermal efficiency. A number of parametric studies are carried out and the effect of operating parameters on performance is assessed. The analysis is performed with customized software, which has been developed for this purpose.


1994 ◽  
Vol 116 (4) ◽  
pp. 727-732 ◽  
Author(s):  
R. J. Nichols

Development of vehicles to operate on nonpetroleum fuels began in earnest in response to the energy shocks of the 1970s. While petroleum will remain the predominant transportation fuel for a long time, petroleum supplies are finite, so it is not too soon to begin the difficult transition to new sources of energy. In the past decade, composition of the fuel utilized in the internal combustion engine has gained recognition as a major factor in the control of emissions from the tailpipe of the automobile and the rate of formation of ozone in the atmosphere. Improvements in air quality can be realized by using vechicles that operate on natural gas, propane, methanol, ethanol, or electricity, but introduction of these alternative fuel vehicles presents major technical and economic challenges to the auto industry, as well as the entire country, as long as gasoline remains plentiful and inexpensive.


2019 ◽  
Vol 19 (17) ◽  
pp. 11303-11314 ◽  
Author(s):  
Tuan V. Vu ◽  
Zongbo Shi ◽  
Jing Cheng ◽  
Qiang Zhang ◽  
Kebin He ◽  
...  

Abstract. A 5-year Clean Air Action Plan was implemented in 2013 to reduce air pollutant emissions and improve ambient air quality in Beijing. Assessment of this action plan is an essential part of the decision-making process to review its efficacy and to develop new policies. Both statistical and chemical transport modelling have been previously applied to assess the efficacy of this action plan. However, inherent uncertainties in these methods mean that new and independent methods are required to support the assessment process. Here, we applied a machine-learning-based random forest technique to quantify the effectiveness of Beijing's action plan by decoupling the impact of meteorology on ambient air quality. Our results demonstrate that meteorological conditions have an important impact on the year-to-year variations in ambient air quality. Further analyses show that the PM2.5 mass concentration would have broken the target of the plan (2017 annual PM2.5<60 µg m−3) were it not for the meteorological conditions in winter 2017 favouring the dispersion of air pollutants. However, over the whole period (2013–2017), the primary emission controls required by the action plan have led to significant reductions in PM2.5, PM10, NO2, SO2, and CO from 2013 to 2017 of approximately 34 %, 24 %, 17 %, 68 %, and 33 %, respectively, after meteorological correction. The marked decrease in PM2.5 and SO2 is largely attributable to a reduction in coal combustion. Our results indicate that the action plan has been highly effective in reducing the primary pollution emissions and improving air quality in Beijing. The action plan offers a successful example for developing air quality policies in other regions of China and other developing countries.


Author(s):  
Matteo Cerutti ◽  
Roberto Modi ◽  
Danielle Kalitan ◽  
Kapil K. Singh

As government regulations become increasingly strict with regards to combustion pollutant emissions, new gas turbine combustor designs must produce lower NOx while also maintaining acceptable combustor operability. The design and implementation of an efficient fuel/air premixer is paramount to achieving low emissions. Options for improving the design of a natural gas fired heavy-duty gas turbine partially premixed fuel nozzle have been considered in the current study. In particular, the study focused on fuel injection and pilot/main interaction at high pressure and high inlet temperature. NOx emissions results have been reported and analyzed for a baseline nozzle first. Available experience is shared in this paper in the form of a NOx correlative model, giving evidence of the consistency of current results with past campaigns. Subsequently, new fuel nozzle premixer designs have been investigated and compared, mainly in terms of NOx emissions performance. The operating range of investigation has been preliminarily checked by means of a flame stability assessment. Adequate margin to lean blow out and thermo-acoustic instabilities onset has been found while also maintaining acceptable CO emissions. NOx emission data were collected over a variety of fuel/air ratios and pilot/main splits for all the fuel nozzle configurations. Results clearly indicated the most effective design option in reducing NOx. In addition, the impact of each design modification has been quantified and the baseline correlative NOx emissions model calibrated to describe the new fuel nozzles behavior. Effect of inlet air pressure has been evaluated and included in the models, allowing the extensive use of less costly reduced pressure test campaigns hereafter. Although the observed effect of combustor pressure drop on NOx is not dominant for this particular fuel nozzle, sensitivity has been performed to consolidate gathered experience and to make the model able to evaluate even small design changes affecting pressure drop.


2013 ◽  
Vol 315 ◽  
pp. 552-556 ◽  
Author(s):  
Shahrul Azmir Osman ◽  
Ahmad Jais Alimin ◽  
V.S. Liong

The use of natural gas as an alternative fuels are motivated from the impact in deteriorating quality of air and the energy shortage from petroleum products. Through retrofitting, CI engine runs on CNG, will be able to reduce the negative impact mainly on the use of petroleum products. However, this required the modification of the combustion chamber geometry by reducing the compression ratio to value that suits combustion of CNG. In this present studies, four different shapes and geometries of combustion chamber were designed and simulate using CFD package powered by Ansys workbench, where k-ε turbulence model was used to predict the flow in the combustion chamber. The results of turbulence kinetic energy, velocity vectors and streamline are presented. The enhancement of air-fuel mixing inside the engine cylinder can be observed, where the design with re-entrance and lower center projection provide better results compared to other combustion geometries designs.


Author(s):  
Amin Akbari ◽  
Vincent McDonell ◽  
Scott Samuelsen

Co firing of natural gas with renewable fuels such as hydrogen can reduce greenhouse gas emissions, and meet other sustainability considerations. At the same time, adding hydrogen to natural gas alters combustion properties, such as burning speeds, heating values, flammability limits, and chemical characteristics. It is important to identify how combustion stability relates to fuel mixture composition in industrial gas turbines and burners and correlate such behavior to fuel properties or operating conditions. Ultimately, it is desired to predict and prevent operability issues when designing a fuel flexible gas turbine combustor. Fuel interchangeability is used to describe the ability of a substitute fuel composition to replace a baseline fuel without significantly altering performance and operation. Any substitute fuel, while maintaining the same heating load as the baseline fuel, must also provide stable combustion with low pollutant emissions. Interchangeability indices try to predict the impact of fuel composition on lean blowoff and flashback. Correlations for operability limits have been reported, though results are more consistent for blowoff compared to flashback. Yet, even for blowoff, some disagreement regarding fuel composition effects are evident. In the present work, promising correlations and parameters for lean blow off and flashback in a swirl stabilized lean premixed combustor are evaluated. Measurements are conducted for fuel compositions ranging from pure natural gas to pure hydrogen under different levels of preheat and air flow rates. The results are used to evaluate the ability of existing approaches to predict blowoff and flashback. The results show that, while a Damköhler number approach for blowoff is promising, important considerations are required in applying the method. For flashback, the quench constant parameter suggested for combustion induced vortex breakdown was applied and found to have limited success for predicting flashback in the present configuration.


10.14311/1540 ◽  
2012 ◽  
Vol 52 (3) ◽  
Author(s):  
Andrej Chríbik ◽  
Marián Polóni ◽  
Ján Lach

This paper deals with the use of the internal combustion piston engine, which is a drive unit for micro-cogeneration units. The introduction is a brief statement of the nature of gas mixture compositions that are useful for the purposes of combustion engines, together with the basic physical and chemical properties relevant to the burning of this gas mixture. Specifically, we will discuss low-energy gases (syngases) and mixtures of natural gas with hydrogen. The second section describes the conversion of the Lombardini LGW 702 combustion engine that is necessary for these types of combustion gases. Before the experimental measurements, a simulation in the Lotus Engine simulation program was carried out to make a preliminary assessment of the impact on the performance of an internal combustion engine. The last section of the paper presents the experimental results of partial measurements of the performance and emission parameters of an internal combustion engine powered by alternative fuels.


2021 ◽  
Vol 312 ◽  
pp. 07022
Author(s):  
Alfredo Lanotte ◽  
Vincenzo De Bellis ◽  
Enrica Malfi

Nowadays there is an increasing interest in carbon-free fuels such as ammonia and hydrogen. Those fuels, on one hand, allow to drastically reduce CO2 emissions, helping to comply with the increasingly stringent emission regulations, and, on the other hand, could lead to possible advantages in performances if blended with conventional fuels. In this regard, this work focuses on the 1D numerical study of an internal combustion engine supplied with different fuels: pure gasoline, and blends of methane-hydrogen and ammonia-hydrogen. The analyses are carried out with reference to a downsized turbocharged two-cylinder engine working in an operating point representative of engine operations along WLTC, namely 1800 rpm and 9.4 bar of BMEP. To evaluate the potential of methane-hydrogen and ammonia-hydrogen blends, a parametric study is performed. The varied parameters are air/fuel proportions (from 1 up to 2) and the hydrogen fraction over the total fuel. Hydrogen volume percentages up to 60% are considered both in the case of methane-hydrogen and ammonia-hydrogen blends. Model predictive capabilities are enhanced through a refined treatment of the laminar flame speed and chemistry of the end gas to improve the description of the combustion process and knock phenomenon, respectively. After the model validation under pure gasoline supply, numerical analyses allowed to estimate the benefits and drawbacks of considered alternative fuels in terms of efficiency, carbon monoxide, and pollutant emissions.


Sign in / Sign up

Export Citation Format

Share Document