scholarly journals Evaluating the Operational Potential of LRV Signatures Derived from UAV Imagery in Performance Evaluation of Cool Roofs

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2787 ◽  
Author(s):  
Park ◽  
Ryu ◽  
Choi ◽  
Um

It is quite difficult to find studies regarding area-wide data from UAV (Unmanned Aerial Vehicle) remote sensing in evaluating the energy saving performance of a cool roof. Acknowledging these constraints, we investigated whether LRV (Light Reflectance Value) signatures derived from UAV imagery could be used effectively as an indicator of area-wide heating and cooling load that distinctively appears according to rooftop color. The case study provides some quantitative tangible evidence for two distinct colors: A whitish color roof appears near the edge of the highest LRV (91.36) and with a low temperature (rooftop surface temperature: (38.03 °C), while a blackish color roof shows the lowest LRV (18.14) with a very high temperature (65.03 °C) where solar radiation is extensively absorbed. A strong negative association (Pearson correlation coefficient, r = −0.76) was observed between the LRV and surface temperature, implying that a higher LRV (e.g., a white color) plays a decisive role in lowering the surface temperature. This research can be used as a valuable reference introducing LRV in evaluating the thermal performance of rooftop color as rooftops satisfying the requirement of a cool roof (reflecting 75% or more of incoming solar energy) are identified based on area-wide objective evidence from UAV imagery.

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4213
Author(s):  
Kirim Lee ◽  
Jihoon Seong ◽  
Youkyung Han ◽  
Won Hee Lee

Global warming is intensifying worldwide, and urban heat islands are occurring as urbanization progresses. The cool roof method is one alternative for reducing the urban heat island phenomenon and lowering the heat on building roofs for a comfortable indoor environment. In this study, a cool roof evaluation was performed using an unmanned aerial vehicle (UAV) and a red, green and blue (RGB) camera instead of a laser thermometer and a thermal infrared sensor to evaluate existing cool roofs. When using a UAV, an RGB sensor is used instead of expensive infrared sensor. Various color space techniques, namely light-reflectance value, hue saturation value (HSV), hue saturation lightness, and YUV (luma component (Y) and two chrominance components, called U (blue projection) and V (red projection)) derived from RGB images, are applied to evaluate color space techniques suitable for cool roof evaluation. This case study shows the following quantitative results: among various color space techniques investigated herein, the white roof with lowest temperature (average surface temperature: 44.1 °C; average indoor temperature: 33.3 °C) showed highest HSV, while the black roof with the highest temperature (surface temperature average: 73.4 °C; indoor temperature average: 37.1 °C) depicted the lowest HSV. In addition, the HSV showed the highest correlation in both the Pearson correlation coefficient and the linear regression analyses when the correlation among the brightness, surface temperature, and indoor temperature of the four color space techniques was analyzed. This study is considered a valuable reference for using RGB cameras and HSV color space techniques, instead of expensive thermal infrared cameras, when evaluating cool roof performance.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6488
Author(s):  
Kirim Lee ◽  
Jinhwan Park ◽  
Sejung Jung ◽  
Wonhee Lee

Existing studies on reducing urban heat island phenomenon and building temperature have been actively conducted; however, studies on investigating the warm roof phenomenon to in-crease the temperature of buildings are insufficient. A cool roof is required in a high-temperature region, while a warm roof is needed in a low-temperature or cold region. Therefore, a warm roof evaluation was conducted in this study using the roof color (black, blue, green, gray, and white), which is relatively easier to install and maintain compared to conventional insulation materials and double walls. A remote sensing method via an unmanned aerial vehicle (UAV)-mounted thermal infrared (TIR) camera was employed. For warm roof evaluation, the accuracy of the TIR camera was verified by comparing it with a laser thermometer, and the correlation between the surface temperature and the room temperature was also confirmed using Pearson correlation. The results showed significant surface temperature differences ranging from 8 °C to 28 °C between the black-colored roof and the other colored roofs and indoor temperature differences from 1 °C to 7 °C. Through this study, it was possible to know the most effective color for a warm roof according to the color differences. This study gave us an idea of which color would work best for a warm roof, as well as the temperature differences from other colors. We believe that the results of this study will be helpful in heating load research, providing an objective basis for determining whether a warm roof is applied.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3955
Author(s):  
Yonghan Ahn ◽  
Hanbyeol Jang ◽  
Junghyon Mun

The purpose of this study is to compare the load calculation results by a model using the air changes per hour (ACH) method and a model using an airflow network (AFN) and to ascertain what causes the difference between the two models. In the basic case study, the difference in the heat transfer distribution of the model in the interior space was investigated. The most significant difference between the two models is the heat transfer that results from infiltration. Parameter analysis was performed to investigate the relationship between the difference and the environmental variables. The result shows that the greater the difference is between the air temperature inside the balcony and the outdoor air temperature, and the greater the air flows from the balcony to the residential area, and the greater the heating and cooling load difference occurs. The analysis using the actual weather files of five domestic cities in South Korea rather than a virtual case shows that the differences are not so obvious when the wind blows at a constant speed throughout the year, but are dominant when the wind does not blow during the night and is stronger alongside the occurrence of sunlight during the day.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Juan Carlos Ríos-Fernández

PurposeThis paper aims to study the use of cool roof technology to avoid unnecessary energy consumption in supermarkets. This will allow to reduce and even cancel the heat absorbed by the roofs, transferring it to the buildings and thus, creating more sustainable cities.Design/methodology/approachThirteen real supermarkets with cool roofs were analysed in Australia, Canada, the USA and Spain. An analysis of so many supermarkets located in different parts of the world with different climatic zones has allowed an inductive analysis, obtaining real data of energy consumption associated with the air conditioning installations for a year with and without implementing the cool roof technology.FindingsThe paper provides insights on how the use of cool roof managed to reduce the need for energy for heating, ventilating and air conditioning by between 3.5 and 38%. Additionally, this technology reduces the annual generation of carbon dioxide (CO2) emissions per square meter of supermarket up to 2.7 kgCO2/m2. It could be an economical technology to apply in new and old buildings with a period of average economic recovery of four years.Research limitations/implicationsBecause of the chosen research approach, the research results may be generalisable. Therefore, researchers are encouraged to test proposals in construction with other uses.Practical implicationsThe paper includes economic and environmental implications for the development of cool roof technology and smooths the way for its implementation to increase energy efficiency in commercial buildings.Originality/valueThis paper is an innovative contribution to the application of cool roof technology as a source of energy savings in commercial construction through the analysis of supermarkets located in different countries with different climate zones. This will help other researchers to advance in this field and facilitate the implementation of the technology.


2018 ◽  
Vol 38 (2) ◽  
pp. 741-749
Author(s):  
Sajad Abasnezhad ◽  
Nima Soltani ◽  
Elin Markarian ◽  
Hamed Aghabalayi Fakhim ◽  
Hamed Khezerloo

2014 ◽  
Vol 525 ◽  
pp. 408-411
Author(s):  
Min Seon Jang ◽  
Gyeong Seok Choi ◽  
Jae Sik Kang ◽  
Yumin Kim

Window film is generally attached the glazing in buildings to improve the thermal performance of the window system by addressing a range of problems such as indoor temperature rise, indoor temperature imbalance, degraded heating and cooling load due to excessive influx of solar radiation. To evaluate the performance of window films, window films are attached to 3mm or 6mm clear glass. However, window films are generally used on existing window systems for reducing the annual energy consumption. Therefore it is necessary to evaluate the performance of window films depending on the performance of glazing such as clear double glazing or low-e double glazing. Thus the purpose of this study is to analyze the performance of window systems when window film is attached. As a result, in the case of applying window films for reducing the SHGC of buildings, it is necessary to select window films suitable for the configuration and performance of the glazing to be installed, considering the SHGC of the entire glazing system.


KIEAE Journal ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 29-36
Author(s):  
Nam-Young Jeong ◽  
Ji-Young Lee ◽  
Young Tae Chae

Sign in / Sign up

Export Citation Format

Share Document