scholarly journals A Simulated Study of Building Integrated Photovoltaics (BIPV) as an Approach for Energy Retrofit in Buildings

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3946 ◽  
Author(s):  
Yasser Farghaly ◽  
Fatma Hassan

Building envelopes can play a significant role in controlling energy consumption, especially in hot regions because of the wide variety of envelope materials and technologies that have been developed. Currently, because of the high rise in energy prices, especially with the high demand of fossil energy in the building sector worldwide, using curtain walls for maintaining adequate lighting in public buildings could lead to higher energy consumption because of the continuous exposure to the sun in hot regions. For this reason, studying the use of renewable or smart alternatives in the building sector to ensure a cleaner, greener environment by deploying sustainable technology in order to reduce energy demand and support economic long-term solutions would be important for solving such a problem. This paper aims at studying the use of renewable energy technologies and alternatives; represented in new building integrated photovoltaics (BIPVs) technology that could be integrated within building skin to reduce energy demand. The methodology follows a quantitative comparative approach, using an energy simulation software to study two different types of BIPV technology (BISOL Premium BXO 365 Wp monocrystalline and BXU 330 Wp, polycrystalline) on an existing building by retrofitting a part of its curtain wall. This is to conclude the energy saving percentage and feasibility of both alternatives.

2019 ◽  
Vol 29 (2) ◽  
pp. 270-285 ◽  
Author(s):  
MA Boukli Hacene ◽  
NE Chabane Sari

The global energy context of the year 2018 makes us pessimistic about the future. The geopolitical, environmental and socio-economic aspects are linked to the political tensions of countries that hold and manipulate the global energy market. These countries are haunted by the population growth, the depletion of fossil resources and the global economic crisis. Each country is trying to find reasonable solutions to deal with this crisis. Unfortunately, these solutions always have direct negative repercussions on the population and on the environment. In this paper we present a case study developed in Algeria and inspired by the current and critical socio-economic situation of the country, in particular, the application of energy-saving techniques to an existing building. The investigation was conducted by using both simulation software and real interventions. We analyse some of the major components, such as building’s orientation and exposure to daylight which have significant impact on energy consumption. We present the concept of Building Performance Simulation Analysis, using Autodesk ECOTECT Analysis and COMSOL Multiphysics software, and give full consideration to various ecological energy-saving methods. Using our models, we present a possible solution for retrofitting a building to minimize its energy consumption. The results are useful for both building energy conversation and creating a comfortable living environment in future.


2016 ◽  
Vol 824 ◽  
pp. 347-354 ◽  
Author(s):  
Rastislav Ingeli ◽  
Miroslav Čekon

The trend in the components of residential buildings is low energy demand buildings in relation to the minimum costs spent by users for their operation. The main aim of their construction is to improve the energy economy of buildings, to reduce the environmental load in energy consumption, to improve the quality of the interior, to ensure the minimum cost level in the operation of buildings and their maintenance in the life cycle. The consequence of increased energy prices and the possible implementation of tax policies in the countries of Europe is more frequently designing and implementing energy self-contained buildings. This means that energy necessary for the general use of a building can be produced in it to certain extent. The concept of such buildings is not only in high quality heat insulating properties, but also in suitable installed devices utilizing alternative sources. The objective indicator of saving and proof of the required level of a building is an analysis of its real energy consumption. The paper analyzes the energy consumption in a specific house which, in the design phase, met the criteria for designing a nearly zero energy building. The analyzed building has a high thermal protection and uses photovoltaic energy as an alternative source. The main aim is to evaluate the concept of the designed nearly zero energy building and to assess it in relation to the really consumed energy.


Author(s):  
Meliha Honic ◽  
Iva Kovacic

AbstractThe increasing population growth and urbanization rises the worldwide consumption of material resources and energy demand. The challenges of the future will be to provide sufficient resources and to minimize the continual amount of waste and energy demand. For the achievement of sustainability, increasing recycling rates and reuse of materials, next to the reduction of energy consumption has the highest priority.This article presents the results of the multidisciplinary research project SCI_BIM, which is conducted on an occupied existing building. Within SCI_BIM, a workflow for coupling digital technologies for scanning and modeling of buildings is developed. Laser scanning is used for capturing the geometry, and ground-penetrating radar is used for assessing material composition. For the semi-automated generation of an as-built BIM, algorithms are developed, wherefore the Point-Cloud serves as a basis. The BIM-model is used for energy modeling and analysis as well as for the automated compilation of Material Passports. Further, a gamification concept will be developed to motivate the buildings’ users to collect data. By applying the gamification concept, the reduction of energy consumption together with an automated update of the as-built BIM will be tested. This article aims to analyze the complex interdisciplinary interactions, data, and model exchange processes of various disciplines collaborating within SCI_BIM.Results show that the developed methodology is confronted with many challenges. Nevertheless, it has the potential to serve as a basis for the creation of secondary raw materials cadaster and for the optimization of energy consumption in existing buildings.


2018 ◽  
Vol 7 (4) ◽  
pp. 124
Author(s):  
Kawar T. Salih

The power shortage is one of the major problems in developing countries. Kurdistan Region of Iraq suffers from this issue, like other developing countries. Especially, after the economy crises that has started in 2014. However, all its efforts for tackling this challenge has been in providing more energy supply stations and more fuel provision. Few studies have been found in the region that seek the relation between the quality of buildings and energy consumption. It is questioned if the building sector in Kurdistan is well managed and environmentally sufficient to consume minimum amount of energy since it is the largest energy consuming sector. This research will seek an alternative to decrease the energy demand in buildings instead of expanding the energy sector. This could be achieved by evaluating the quality of building sector environmentally and improving it. Providing guidelines for building’s thermal regulations, passive building design and increasing the energy efficiency of buildings by renewal means could be alternative strategies for lowering the energy consumption. Theoretical and numerical research approach have been taken in to account for finding the answer through a case study and comparative analysis. A variation of 21-29% of power consumption can be observed between buildings that have not considered energy efficiency criteria in their design and those who reflected them more in the design.


2011 ◽  
Vol 99-100 ◽  
pp. 644-649
Author(s):  
Yan Qiu Cui ◽  
Rui Han Wei ◽  
Cai Ling Luo ◽  
Ji Kui Miao

In order to quantify energy saving effect of existing building envelope reconstruction, the paper makes the envelope reconstruction project of Jinan Lixia Office Building as a case, uses energy consumption simulation software DeST-C to make dynamic simulation analysis on several aspects such as natural room temperature, cold and hot load before and after reconstruction of experimental building in cold area. After reconstruction, accumulative hot load of building obtained by calculation decreases 33%, accumulative cold load decreases 15.67%, total load decreases 21.04% in the whole year, and the results show energy saving reconstruction effect of existing building envelope is remarkable.


2016 ◽  
Vol 859 ◽  
pp. 88-92 ◽  
Author(s):  
Radu Manescu ◽  
Ioan Valentin Sita ◽  
Petru Dobra

Energy consumption awareness and reducing consumption are popular topics. Building energy consumption counts for almost a third of the global energy consumption and most of that is used for building heating and cooling. Building energy simulation tools are currently gaining attention and are used for optimizing the design for new and existing buildings. For O&M phase in existing buildings, the multiannual average weather data used in the simulation tools is not suitable for evaluating the performance of the building. In this study an existing building was modeled in EnergyPlus. Real on-site weather data was used for the dynamic simulation for the heating energy demand with the aim of comparing the measured energy consumption with the simulated one. The aim is to develop an early fault detection tool for building management.


2017 ◽  
Vol 76 (9) ◽  
pp. 2473-2481 ◽  
Author(s):  
S. Sid ◽  
A. Volant ◽  
G. Lesage ◽  
M. Heran

Abstract Energy consumption and sludge production minimization represent rising challenges for wastewater treatment plants (WWTPs). The goal of this study is to investigate how energy is consumed throughout the whole plant and how operating conditions affect this energy demand. A WWTP based on the activated sludge process was selected as a case study. Simulations were performed using a pre-compiled model implemented in GPS-X simulation software. Model validation was carried out by comparing experimental and modeling data of the dynamic behavior of the mixed liquor suspended solids (MLSS) concentration and nitrogen compounds concentration, energy consumption for aeration, mixing and sludge treatment and annual sludge production over a three year exercise. In this plant, the energy required for bioreactor aeration was calculated at approximately 44% of the total energy demand. A cost optimization strategy was applied by varying the MLSS concentrations (from 1 to 8 gTSS/L) while recording energy consumption, sludge production and effluent quality. An increase of MLSS led to an increase of the oxygen requirement for biomass aeration, but it also reduced total sludge production. Results permit identification of a key MLSS concentration allowing identification of the best compromise between levels of treatment required, biological energy demand and sludge production while minimizing the overall costs.


2015 ◽  
Vol 1100 ◽  
pp. 30-35 ◽  
Author(s):  
A. Brenek ◽  
V. Vaclavik ◽  
Jan Valíček ◽  
T. Dvorsky ◽  
Jaromír Daxner ◽  
...  

Increasing energy prices, along with escalating demands for thermal insulation properties of enclosure structures, force the owners of buildings to reduce the operating costs of heating. That is why the question of reducing the energy consumption of buildings, also including the category of historical buildings [10], has been gaining ground. The reduction of energy consumption of these buildings is often accompanied by the requirement to eliminate moisture problems of base structures caused by leaking or broken waterproofing of the bottom part of the object. The subsequent increase of the thermal resistance of the building envelope must be performed by means of special insulation materials allowing the drainage of liquid water from the structure. The paper presents the properties and the influence of the developed materials on the course of built-in moisture in the base structure affected by this phenomenon using Delphin simulation software, based on the measured thermal and technical parameters. The developed material is a composition of pozzolan binder, foaming agent and waste resulting from the production of cellular concrete blocks. According to tests carried out in [1], it is possible to produce concretes with sufficient strengths for rehabilitation boards when you substitute natural aggregates with waste aluminosilicate and, according to [2, 3, 4, 5, 6], you will achieve better rehabilitation and thermal insulation properties by using porous filler. The developed material is intended for the so-called soft rehabilitation, and its function is specifically presented on a structure built from sandstone blocks. This type of structures can be found in north Bohemia and the application of rehabilitation work must be very carefully considered, because quick drying of built-in moisture in masonry, for instance by means of cutting the lower part of the structure and by inserting waterproofing, will cause shape changes of the structure accompanied by the formation of cracks.


The demand for energy consumption requires efficient financial development in terms of bank credit. Therefore, this study examines the nexus between Financial Development, Economic Growth, Energy Prices and Energy Consumption in India, utilizing Vector Error Correction Model (VECM) technique to determine the nature of short and long term relationships from 2010 to 2019. The estimation of results indicates that a one percent increase in bank credits to private sector results in 0.10 percent increase in energy consumption and 0.28 percent increase in energy consumption responses to 1 percent increase in economic growth. It is also observed that the impact of energy price proxied by consumer price index is statistically significant with a negative sign indicating the consistency with the theory.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 173
Author(s):  
Abdeljalil Chougradi ◽  
François Zaviska ◽  
Ahmed Abed ◽  
Jérôme Harmand ◽  
Jamal-Eddine Jellal ◽  
...  

As world demand for clean water increases, reverse osmosis (RO) desalination has emerged as an attractive solution. Continuous RO is the most used desalination technology today. However, a new generation of configurations, working in unsteady-state feed concentration and pressure, have gained more attention recently, including the batch RO process. Our work presents a mathematical modeling for batch RO that offers the possibility of monitoring all variables of the process, including specific energy consumption, as a function of time and the recovery ratio. Validation is achieved by comparison with data from the experimental set-up and an existing model in the literature. Energetic comparison with continuous RO processes confirms that batch RO can be more energy efficient than can continuous RO, especially at a higher recovery ratio. It used, at recovery, 31% less energy for seawater and 19% less energy for brackish water. Modeling also proves that the batch RO process does not have to function under constant flux to deliver good energetic performance. In fact, under a linear pressure profile, batch RO can still deliver better energetic performance than can a continuous configuration. The parameters analysis shows that salinity, pump and energy recovery devices efficiencies are directly linked to the energy demand. While increasing feed volume has a limited effect after a certain volume due to dilution, it also shows, interestingly, a recovery ratio interval in which feed volume does not affect specific energy consumption.


Sign in / Sign up

Export Citation Format

Share Document