scholarly journals Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4031 ◽  
Author(s):  
Theodoros Kalogiannis ◽  
Md Hosen ◽  
Mohsen Sokkeh ◽  
Shovon Goutam ◽  
Joris Jaguemont ◽  
...  

A lithium-ion battery cell’s electrochemical performance can be obtained through a series of standardized experiments, and the optimal operation and monitoring is performed when a model of the Li-ions is generated and adopted. With discrete-time parameter identification processes, the electrical circuit models (ECM) of the cells are derived. Over their wide range, the dual-polarization (DP) ECM is proposed to characterize two prismatic cells with different anode electrodes. In most of the studies on battery modeling, attention is paid to the accuracy comparison of the various ECMs, usually for a certain Li-ion, whereas the parameter identification methods of the ECMs are rarely compared. Hence in this work, three different approaches are performed for a certain temperature throughout the whole SoC range of the cells for two different load profiles, suitable for light- and heavy-duty electromotive applications. Analytical equations, least-square-based methods, and heuristic algorithms used for model parameterization are compared in terms of voltage accuracy, robustness, and computational time. The influence of the ECMs’ parameter variation on the voltage root mean square error (RMSE) is assessed as well with impedance spectroscopy in terms of Ohmic, internal, and total resistance comparisons. Li-ion cells are thoroughly electrically characterized and the following conclusions are drawn: (1) All methods are suitable for the modeling, giving a good agreement with the experimental data with less than 3% max voltage relative error and 30 mV RMSE in most cases. (2) Particle swarm optimization (PSO) method is the best trade-off in terms of computational time, accuracy, and robustness. (3) Genetic algorithm (GA) lack of computational time compared to PSO and LS (4) The internal resistance behavior, investigated for the PSO, showed a positive correlation to the voltage error, depending on the chemistry and loading profile.

2019 ◽  
Vol 24 ◽  
pp. 100762 ◽  
Author(s):  
Shuang Song ◽  
Xiong Zhang ◽  
Chen Li ◽  
Kai Wang ◽  
Xianzhong Sun ◽  
...  

Author(s):  
George J. Nelson ◽  
Zachary K. van Zandt ◽  
Piyush D. Jibhakate

The lithium-ion battery (LIB) has emerged as a key energy storage device for a wide range of applications, from consumer electronics to transportation. While LIBs have made key advancements in these areas, limitations remain for Li-ion batteries with respect to affordability, performance, and reliability. These challenges have encouraged the exploration for more advanced materials and novel chemistries to mitigate these limitations. The continued development of Li-ion and other advanced batteries is an inherently multiscale problem that couples electrochemistry, transport phenomena, mechanics, microstructural morphology, and device architecture. Observing the internal structure of batteries, both ex situ and during operation, provides a critical capability for further advancement of energy storage technology. X-ray imaging has been implemented to provide further insight into the mechanisms governing Li-ion batteries through several 2D and 3D techniques. Ex situ imaging has yielded microstructural data from both anode and cathode materials, providing insight into mesoscale structure and composition. Furthermore, since X-ray imaging is a nondestructive process studies have been conducted in situ and in operando to observe the mechanisms of operation as they occur. Data obtained with these methods has also been integrated into multiphysics models to predict and analyze electrode behavior. The following paper provides a brief review of X-ray imaging work related to Li-ion batteries and the opportunities these methods provide for the direct observation and analysis of the multiphysics behavior of battery materials.


Author(s):  
Krishnashis Chatterjee ◽  
Pradip Majumdar ◽  
David Schroeder ◽  
S. Rao Kilaparti

In the recent years, with the rapid advancements made in the technologies of electric and hybrid electric vehicles, selecting suitable batteries has become a major factor. Among the batteries currently used for these types of vehicles, the lithium-ion battery leads the race. Apart from that, the energy gained from regenerative braking in locomotives and vehicles can be stored in batteries for later use for propulsion thus improving the fuel consumption and efficiency. But batteries can be subjected to a wide range of temperatures depending upon the operating conditions. Thus, a thorough knowledge of the battery performance over a wide range of temperatures and different load conditions is necessary for their successful employment in future technologies. In this context, this study aims to experimentally analyze the performance of Li-ion batteries by monitoring the charge–discharge rates, efficiencies, and energy storage capabilities under different environmental and load conditions. Sensors and thermal imaging camera were used to track the environment and battery temperatures, whereas the charge–discharge characteristics were analyzed using CADEX analyzer. The results show that the battery performance is inversely proportional to charge–discharge rates. This is because, at higher charge–discharge rates, the polarization losses increase thus increasing internal heat generation and battery temperature. Also, based on the efficiency and energy storage ability, the optimum performing conditions of the Li-ion battery are 30–40 °C (temperature) and 0.5 C (C-rate).


2019 ◽  
Vol 28 (08) ◽  
pp. 1950130
Author(s):  
R. Senthilkumar ◽  
G. M. Tamilselvan

Converting the harnessed energy from the environment or other energy sources to electrical energy is referred to as energy harvesting. The need of energy harvesting in wireless sensor networks is an essential issue to be handled to allow adequacy of the innovation in a wide range of utilizations. The maximum energy should be harvested from the solar panels and it should be stored and managed effectively to power the nodes in the wireless network. For this purpose, a solution proposed in this paper utilizes a hybrid accumulator architecture that combines the advantages of an effectively controlled “battery and ultra-capacitor (UC)” where the power stream from a lithium ion (Li-ion) battery is combined with a UC for power upgrade and conveyance to the stack proficiently and using a new adaptive power organizing algorithm, management of power in the battery and capacitor can be performed. The proposed design is implemented in Simulink and the results show the effect of the hybrid design.


Author(s):  
Nguyen Van Hao ◽  
Nguyen Duc Minh ◽  
Pham Nguyen Thanh Loan

In this paper, an adaptive and wide-range output DC-DC converter designed for lithium-ion (Li-Ion) battery charger circuit is proposed. The converter operates in continuous conduction mode (CCM) to provide an output voltage in response to battery voltage and a wide-range output current to ensure that circuit requirements are met. This circuit is designed on Cadence using 0.35-um BCD technology. Simulation results show that the circuit fully operates in CCM mode with a load current from 50 mA to 1000 mA and output voltage ripple factor is less than 1 %. Furthermore, the current supplied to the load circuit responses to three types of Li-Ion rechargeable currents. The output voltage of the converter varies from 2.8 to 4.5 V corresponding to the voltage range of the battery being charged from 2.5 to 4.2 V. The average power efficiency of the converter in large load current mode (1000 mA) reaches 94 %.


2021 ◽  
Vol 58 (2) ◽  
pp. 38-57
Author(s):  
Piotr Lesiak ◽  
Dariusz Pietrzela ◽  
Piotr Mortka

Aim: The aim of the article is to present the current state of knowledge regarding the possibility of suppressing or effectively extinguishing fires of electric vehicle. Due to the growing popularity of means of transport powered by electric batteries, the problem of emerging fires and their effects is becoming recognizable. Due to the possible violent process of combustion of lithium-ion batteries (hereinafter referred to as Li-Ion batteries), a fire in a vehicle may lead to a wide range of property damage. For at least a decade, intensive efforts have been made to develop appropriate methods to allow firefighters to deal with the problem of fires of electric vehicles. These activities were directed, among others, at new fire extinguishing/suppression techniques, innovative extinguishing agents and methods of their application. Introduction: Taking into account the current global trends in changing the method of powering vehicles from fossil fuels into electricity, the occurrence of such events should be expected to intensify. The authors systematize the issue by analysing the literature on fires, Li-Ion batteries being a critical ele- ment that may initiate a fire. The adopted and practiced methods of extinguishing/suppressing a fire as well as the used extinguishing agents were also analysed. The publication may be an element helpful in selecting the most optimal fire extinguishing method of the electric energy storage unit in a vehicle. Methodology: The review of the current state of knowledge was made based on publications on the fire characteristics of Li-Ion batteries, as well as works and research projects in the field of extinguishing methods and the effectiveness of various extinguishing agents. In addition, the procedures used by the emergency services and selected real events were analysed. Conclusions: Fires of Li-Ion batteries are a relatively new and growing phenomenon. Fires in fully or partially electric vehicles are much more difficult to fully extinguish compared to fires in vehicles with internal combustion engines. So far, no effective method has been developed that would allow a fire to be extinguished in a short time. Activities in this area focus on minimizing the effects. There is still a need to look for new technical and tactical solutions in order to optimize the procedures leading to more effective activities of the services in this type of incidents. Keywords: lithium-ion battery, Li-Ion, fire, extinguishing, suppression Type of article: review article


2018 ◽  
pp. 104-110
Author(s):  
I. A. Borovoy ◽  
O. V. Danishevskiy ◽  
A. V. Parfenov

The article substantiates the necessity of organizing the control system of modern lithium-ion batteries. Passive and active methods of cell balancing are described. The method of increase of efficiency of modes of accumulation of electric energy by means of the special electronic control device (the intellectual controller) and its further use for power supply of the functional equipment is considered. The structure of the intelligent controller as a part of the autonomous power supply system with the description of its main functional units and purpose is presented. Practical results of application in the intellectual controller of original adaptive control algorithms defining modes of operation of lithium-ion drives depending on various environmental conditions are resulted. The results of the analysis obtained by the results of experimental operation of the battery system, reflecting the qualitative and quantitative advantages of the proposed method.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3429 ◽  
Author(s):  
Chu ◽  
Yuan ◽  
Hu ◽  
Pan ◽  
Pan

With increasing size and flexibility of modern grid-connected wind turbines, advanced control algorithms are urgently needed, especially for multi-degree-of-freedom control of blade pitches and sizable rotor. However, complex dynamics of wind turbines are difficult to be modeled in a simplified state-space form for advanced control design considering stability. In this paper, grey-box parameter identification of critical mechanical models is systematically studied without excitation experiment, and applicabilities of different methods are compared from views of control design. Firstly, through mechanism analysis, the Hammerstein structure is adopted for mechanical-side modeling of wind turbines. Under closed-loop control across the whole wind speed range, structural identifiability of the drive-train model is analyzed in qualitation. Then, mutual information calculation among identified variables is used to quantitatively reveal the relationship between identification accuracy and variables’ relevance. Then, the methods such as subspace identification, recursive least square identification and optimal identification are compared for a two-mass model and tower model. At last, through the high-fidelity simulation demo of a 2 MW wind turbine in the GH Bladed software, multivariable datasets are produced for studying. The results show that the Hammerstein structure is effective for simplify the modeling process where closed-loop identification of a two-mass model without excitation experiment is feasible. Meanwhile, it is found that variables’ relevance has obvious influence on identification accuracy where mutual information is a good indicator. Higher mutual information often yields better accuracy. Additionally, three identification methods have diverse performance levels, showing their application potentials for different control design algorithms. In contrast, grey-box optimal parameter identification is the most promising for advanced control design considering stability, although its simplified representation of complex mechanical dynamics needs additional dynamic compensation which will be studied in future.


Sign in / Sign up

Export Citation Format

Share Document