scholarly journals Estimation of Impedance and Susceptance Parameters of a 3-Phase Cable System Using PMU Data

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4573 ◽  
Author(s):  
Ravi Shankar Singh ◽  
Helko van den Brom ◽  
Stanislav Babaev ◽  
Sjef Cobben ◽  
Vladimir Ćuk

This paper proposes a new regression-based method to estimate resistance, reactance, and susceptance parameters of a 3-phase cable segment using phasor measurement unit (PMU) data. The novelty of this method is that it gives accurate parameter estimates in the presence of unknown bias errors in the measurements. Bias errors are fixed errors present in the measurement equipment and have been neglected in previous such attempts of estimating parameters of a 3-phase line or cable segment. In power system networks, the sensors used for current and voltage measurements have inherent magnitude and phase errors whose measurements need to be corrected using calibrated correction coefficients. Neglecting or using wrong error correction coefficients causes fixed bias errors in the measured current and voltage signals. Measured current and voltage signals at different time instances are the variables in the regression model used to estimate the cable parameters. Thus, the bias errors in the sensors become fixed errors in the variables. This error in variables leads to inaccuracy in the estimated parameters. To avoid this, the proposed method uses a new regression model using extra parameters which facilitate the modeling of present but unknown bias errors in the measurement system. These added parameters account for the errors present in the non- or wrongly calibrated sensors. Apart from the measurement bias, random measurement errors also contribute to the total uncertainty of the estimated parameters. This paper also presents and compares methods to estimate the total uncertainty in the estimated parameters caused by the bias and random errors present in the measurement system. Results from simulation-based and laboratory experiments are presented to show the efficacy of the proposed method. A discussion about analyzing the obtained results is also presented.

2000 ◽  
Vol 37 (1) ◽  
pp. 113-124 ◽  
Author(s):  
Prasad A. Naik ◽  
Chih-Ling Tsai

Commercial market research firms provide information on advertising variables of interest, such as brand awareness or gross rating points, that are likely to contain measurement errors. This unreliability of measured variables induces bias in the estimated parameters of dynamic models of advertising. Consequently, advertisers either under- or overspend on advertising to maintain a desired level of brand awareness. Monte Carlo studies show that the magnitude of bias can be serious when conventional estimation methods, such as ordinary least squares and errors in variables, are employed to obtain parameter estimates. Therefore, the authors have developed two new approaches that either reduce or eliminate parameter bias. Using these methods, advertisers can determine an unbiased optimal advertising budget, even if advertising variables are measured with error. The application of these methods to estimate the extent of measurement noise in empirical advertising data is illustrated.


Solar Energy ◽  
1991 ◽  
Vol 47 (1) ◽  
pp. 1-16 ◽  
Author(s):  
B. Bourges ◽  
A. Rabl ◽  
B. Leide ◽  
M.J. Carvalho ◽  
M. Collares-Pereira

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Minho Park ◽  
Dongmin Lee

In this study, a random parameter Tobit regression model approach was used to account for the distinct censoring problem and unobserved heterogeneity in accident data. We used accident rate data (continuous data) instead of accident frequency data (discrete count data) to address the zero cell problems from data where roadway segments do not have any recorded accidents over the observed time period. The unobserved heterogeneity problem is also considered by using random parameters, which are parameter estimates that vary across observations instead of fixed parameters, which are parameter estimates that are fixed/constant over observations. Nine years (1999–2007) of panel data related to severe injury accidents in Washington State, USA, were used to develop the random parameter Tobit model. The results showed that the Tobit regression model with random parameters is a better approach to explore factors influencing severe injury accident rates on roadway segments under consideration of unobserved heterogeneity problems.


2019 ◽  
Author(s):  
Leili Tapak ◽  
Omid Hamidi ◽  
Majid Sadeghifar ◽  
Hassan Doosti ◽  
Ghobad Moradi

Abstract Objectives Zero-inflated proportion or rate data nested in clusters due to the sampling structure can be found in many disciplines. Sometimes, the rate response may not be observed for some study units because of some limitations (false negative) like failure in recording data and the zeros are observed instead of the actual value of the rate/proportions (low incidence). In this study, we proposed a multilevel zero-inflated censored Beta regression model that can address zero-inflation rate data with low incidence.Methods We assumed that the random effects are independent and normally distributed. The performance of the proposed approach was evaluated by application on a three level real data set and a simulation study. We applied the proposed model to analyze brucellosis diagnosis rate data and investigate the effects of climatic and geographical position. For comparison, we also applied the standard zero-inflated censored Beta regression model that does not account for correlation.Results Results showed the proposed model performed better than zero-inflated censored Beta based on AIC criterion. Height (p-value <0.0001), temperature (p-value <0.0001) and precipitation (p-value = 0.0006) significantly affected brucellosis rates. While, precipitation in ZICBETA model was not statistically significant (p-value =0.385). Simulation study also showed that the estimations obtained by maximum likelihood approach had reasonable in terms of mean square error.Conclusions The results showed that the proposed method can capture the correlations in the real data set and yields accurate parameter estimates.


2019 ◽  
Vol 41 (13) ◽  
pp. 3666-3678
Author(s):  
Sirshendu Saha ◽  
Saikat Kumar Bera ◽  
Hiranmoy Mandal ◽  
Pradip Kumar Sadhu ◽  
Satish Chandra Bera

In high tension power measurement, potential transformer (PT) and current transformer (CT) are used in order to reduce high tension voltage and current, respectively. But both PT and CT suffer from ratio error and phase angle error, which may produce severe error in power measurement. In the present paper, modified designs of PT and CT are combined to develop an electronic power measurement circuit in order to reduce the measurement errors. The modified PT and CT have reduced phase angle error and ratio error. In the power measurement circuit, the instantaneous product of the outputs of these PT and CT is determined by using a simple light emitting diode (LED)-light dependent register (LDR) or LED-LDR-based product circuit. The operation of the proto type power measurement unit designed in the present work has been experimentally tested and the measured outputs are compared with the readings of laboratory standard wattmeter. The experimental results are reported in the paper. Very good linear characteristics are observed.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 543
Author(s):  
B. Mahaboob ◽  
B. Venkateswarlu ◽  
C. Narayana ◽  
J. Ravi sankar ◽  
P. Balasiddamuni

This research article uses Matrix Calculus techniques to study least squares application of nonlinear regression model, sampling distributions of nonlinear least squares estimators of regression parametric vector and error variance and testing of general nonlinear hypothesis on parameters of nonlinear regression model. Arthipova Irina et.al [1], in this paper, discussed some examples of different nonlinear models and the application of OLS (Ordinary Least Squares). MA Tabati et.al (2), proposed a robust alternative technique to OLS nonlinear regression method which provide accurate parameter estimates when outliers and/or influential observations are present. Xu Zheng et.al [3] presented new parametric tests for heteroscedasticity in nonlinear and nonparametric models.  


2012 ◽  
Vol 220-223 ◽  
pp. 1423-1426
Author(s):  
Ke Qin Liu ◽  
Xue Tao Pan ◽  
Jian Wen Cai

According to a number of issues in the traditional temperature measurement, the multi-channel temperature measurement system based on virtual instrument is developed. In terms of measurement range and accuracy, Integrated Temperature Sensor TMP36, platinum resistance Pt100, and K-type thermocouple are selected to achieve multi-point temperature measurement, signal conditioning circuit is designed to match with every sensor. On this basis, combined with the technical parameters of each component, by means of the theory of uncertainty, analysis of the total uncertainty of system has been made. The calculation results show that the selection of each component for the temperature measurement system is reasonable, which can completely meet the measurement requirements.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Getachew A. Dagne ◽  
Yangxin Huang

Complex longitudinal data are commonly analyzed using nonlinear mixed-effects (NLME) models with a normal distribution. However, a departure from normality may lead to invalid inference and unreasonable parameter estimates. Some covariates may be measured with substantial errors, and the response observations may also be subjected to left-censoring due to a detection limit. Inferential procedures can be complicated dramatically when such data with asymmetric characteristics, left censoring, and measurement errors are analyzed. There is relatively little work concerning all of the three features simultaneously. In this paper, we jointly investigate a skew-tNLME Tobit model for response (with left censoring) process and a skew-tnonparametric mixed-effects model for covariate (with measurement errors) process under a Bayesian framework. A real data example is used to illustrate the proposed methods.


2017 ◽  
Vol 10 (2) ◽  
pp. 667-680 ◽  
Author(s):  
Shohei Nomura ◽  
Hitoshi Mukai ◽  
Yukio Terao ◽  
Toshinobu Machida ◽  
Yukihiro Nojiri

Abstract. We developed a battery-powered carbon dioxide (CO2) measurement system for monitoring at the summit of Mt. Fuji (3776 m a.s.l.), which experiences very low temperatures (below −20 °C) and severe environmental conditions without access to gridded electricity for 10 months (from September to June). Our measurement system used 100 batteries to run the measurement unit during these months. These batteries were charged during the 2-month summer season when gridded electricity was available, using a specially designed automatic battery-charging system. We installed this system in summer 2009 at the Mt. Fuji weather station; observations of atmospheric CO2 concentration were taken through December 2015. Measurements were never interrupted by a lack of battery power except for two cases in which lightning damaged a control board. Thus we obtained CO2 data during about 94 % of the 6-year period. Analytical performances (stability and accuracy) were better than 0.1 ppm, as tested by checking working standards and comparisons with flask sampling.Observational results showed that CO2 mole fractions at Mt. Fuji demonstrated clear seasonal variation. The trend and the variability of the CO2 growth rate observed at Mt. Fuji were very similar to those of the Mauna Loa Observatory (MLO). Seasonally, the concentration at Mt. Fuji was 2–10 ppm lower in summer and 2–12 ppm higher in winter than those at MLO. The lower concentrations at Mt. Fuji in summer are mainly attributed to episodes of air mass transport from Siberia or China, where CO2 is taken up by the terrestrial biosphere. On the other hand, the relatively higher concentrations in winter seem to reflect the high percentage of air masses originating from China or Southeast Asia during this period, which carry increased anthropogenic carbon dioxide. These results show that Mt. Fuji is not very influenced by local sources but rather by the sources and sinks over a very large region.Thus we conclude that, as this system could provide stable measurement data with relatively easy operation for 6 years at Mt. Fuji, it could be a useful monitoring technique for remote background sites elsewhere.


Sign in / Sign up

Export Citation Format

Share Document