scholarly journals A Review on the Meandering of Wind Turbine Wakes

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4725 ◽  
Author(s):  
Xiaolei Yang ◽  
Fotis Sotiropoulos

Meandering describes the large-scale, low frequency motions of wind turbine wakes, which could determine wake recovery rates, impact the loads exerted on turbine structures, and play a critical role in the design and optimal control of wind farms. This paper presents a comprehensive review of previous work related to wake meandering. Emphasis is placed on the origin and characteristics of wake meandering and computational models, including both the dynamic wake meandering models and large-eddy simulation approaches. Future research directions in the field are also discussed.

Author(s):  
Xu Pei-Zhen ◽  
Lu Yong-Geng ◽  
Cao Xi-Min

Background: Over the past few years, the subsynchronous oscillation (SSO) caused by the grid-connected wind farm had a bad influence on the stable operation of the system and has now become a bottleneck factor restricting the efficient utilization of wind power. How to mitigate and suppress the phenomenon of SSO of wind farms has become the focus of power system research. Methods: This paper first analyzes the SSO of different types of wind turbines, including squirrelcage induction generator based wind turbine (SCIG-WT), permanent magnet synchronous generator- based wind turbine (PMSG-WT), and doubly-fed induction generator based wind turbine (DFIG-WT). Then, the mechanisms of different types of SSO are proposed with the aim to better understand SSO in large-scale wind integrated power systems, and the main analytical methods suitable for studying the SSO of wind farms are summarized. Results: On the basis of results, using additional damping control suppression methods to solve SSO caused by the flexible power transmission devices and the wind turbine converter is recommended. Conclusion: The current development direction of the SSO of large-scale wind farm grid-connected systems is summarized and the current challenges and recommendations for future research and development are discussed.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3496
Author(s):  
Subhamoy Bhattacharya ◽  
Suryakanta Biswal ◽  
Muhammed Aleem ◽  
Sadra Amani ◽  
Athul Prabhakaran ◽  
...  

Large scale offshore wind farms are relatively new infrastructures and are being deployed in regions prone to earthquakes. Offshore wind farms comprise of both offshore wind turbines (OWTs) and balance of plants (BOP) facilities, such as inter-array and export cables, grid connection etc. An OWT structure can be either grounded systems (rigidly anchored to the seabed) or floating systems (with tension legs or catenary cables). OWTs are dynamically-sensitive structures made of a long slender tower with a top-heavy mass, known as Nacelle, to which a heavy rotating mass (hub and blades) is attached. These structures, apart from the variable environmental wind and wave loads, may also be subjected to earthquake related hazards in seismic zones. The earthquake hazards that can affect offshore wind farm are fault displacement, seismic shaking, subsurface liquefaction, submarine landslides, tsunami effects and a combination thereof. Procedures for seismic designing OWTs are not explicitly mentioned in current codes of practice. The aim of the paper is to discuss the seismic related challenges in the analysis and design of offshore wind farms and wind turbine structures. Different types of grounded and floating systems are considered to evaluate the seismic related effects. However, emphasis is provided on Tension Leg Platform (TLP) type floating wind turbine. Future research needs are also identified.


Acoustics ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 171-206 ◽  
Author(s):  
Colin Hansen ◽  
Kristy Hansen

This review is focussed on large-scale, horizontal-axis upwind turbines. Vertical-axis turbines are not considered here as they are not sufficiently efficient to be deployed in the commercial generation of electricity. Recent developments in horizontal-axis wind turbine noise research are summarised and topics that are pertinent to the problem, but are yet to be investigated, are explored and suggestions for future research are offered. The major portion of recent and current research on wind turbine noise generation, propagation and its effects on people and animals is being undertaken by groups in Europe, UK, USA, Japan, Australia and New Zealand. Considerable progress has been made in understanding wind turbine noise generation and propagation as well as the effect of wind farm noise on people, birds and animals. However, much remains to be done to answer many of the questions for which answers are still uncertain. In addition to community concerns about the effect of wind farm noise on people and how best to regulate wind farm noise and check installed wind farms for compliance, there is considerable interest from turbine manufacturers in developing quieter rotors, with the intention of allowing wind farm installations to be closer to populated areas. The purpose of this paper is to summarise recent and current wind farm noise research work and the research questions that remain to be addressed or are in the process of being addressed. Topics that are the subject of on-going research are discussed briefly and references to recent and current work are included.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fei Qu ◽  
Aki Tsuchiya

Wind turbines play an important role in the worldwide mission of producing renewable energy. The development toward integrating large-scale wind turbines in the urban environment has raised concerns over the noise impacts on urban residents. While most of the existing studies on wind turbine noise (WTN) have focused on rural settings, this paper investigates the relationship between WTN, noise perception and self-reported health of people, and controlling for background characteristics of the residents in urbanized areas. Questionnaire surveys were carried out around three suburban wind farms in the UK with 359 respondents. A-weighted sound pressure levels of WTN were predicted using noise mapping, for the most exposed façade of each dwelling of the respondent. The dose-response relationship was found between WTN and annoyance, moderated by age and degree of education. WTN was associated with some aspects of self-reported health, including raised health concerns, having headaches, nausea, and ear discomfort, but was not related to sleep disturbance directly. Noise sensitivity, attitudes to wind energy, and visibility of the wind turbines were found to significantly influence self-reported health. By employing a second variant of the questionnaire with the research aim masked, this study also addressed the focusing effects induced by the questionnaire design. The significant differences in the reported adverse health between questionnaire variants implied focusing bias among the sample who knew the research purpose. This elicited a methodological finding that should be noted in future research.


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Pim Bongaerts ◽  
Gonzalo Perez-Rosales ◽  
Veronica Z Radice ◽  
Gal Eyal ◽  
Andrea Gori ◽  
...  

Abstract Mesophotic coral ecosystems (MCEs) and temperate mesophotic ecosystems (TMEs) occur at depths of roughly 30–150 m depth and are characterized by the presence of photosynthetic organisms despite reduced light availability. Exploration of these ecosystems dates back several decades, but our knowledge remained extremely limited until about a decade ago, when a renewed interest resulted in the establishment of a rapidly growing research community. Here, we present the ‘mesophotic.org’ database, a comprehensive and curated repository of scientific literature on mesophotic ecosystems. Through both manually curated and automatically extracted metadata, the repository facilitates rapid retrieval of available information about particular topics (e.g. taxa or geographic regions), exploration of spatial/temporal trends in research and identification of knowledge gaps. The repository can be queried to comprehensively obtain available data to address large-scale questions and guide future research directions. Overall, the ‘mesophotic.org’ repository provides an independent and open-source platform for the ever-growing research community working on MCEs and TMEs to collate and expedite our understanding of the occurrence, composition and functioning of these ecosystems. Database URL: http://mesophotic.org/


Author(s):  
I. Janajreh ◽  
C. Ghenai

Large scale wind turbines and wind farms continue to evolve mounting 94.1GW of the electrical grid capacity in 2007 and expected to reach 160.0GW in 2010 according to World Wind Energy Association. They commence to play a vital role in the quest for renewable and sustainable energy. They are impressive structures of human responsiveness to, and awareness of, the depleting fossil fuel resources. Early generation wind turbines (windmills) were used as kinetic energy transformers and today generate 1/5 of the Denmark’s electricity and planned to double the current German grid capacity by reaching 12.5% by year 2010. Wind energy is plentiful (72 TW is estimated to be commercially viable) and clean while their intensive capital costs and maintenance fees still bar their widespread deployment in the developing world. Additionally, there are technological challenges in the rotor operating characteristics, fatigue load, and noise in meeting reliability and safety standards. Newer inventions, e.g., downstream wind turbines and flapping rotor blades, are sought to absorb a larger portion of the cost attributable to unrestrained lower cost yaw mechanisms, reduction in the moving parts, and noise reduction thereby reducing maintenance. In this work, numerical analysis of the downstream wind turbine blade is conducted. In particular, the interaction between the tower and the rotor passage is investigated. Circular cross sectional tower and aerofoil shapes are considered in a staggered configuration and under cross-stream motion. The resulting blade static pressure and aerodynamic forces are investigated at different incident wind angles and wind speeds. Comparison of the flow field results against the conventional upstream wind turbine is also conducted. The wind flow is considered to be transient, incompressible, viscous Navier-Stokes and turbulent. The k-ε model is utilized as the turbulence closure. The passage of the rotor blade is governed by ALE and is represented numerically as a sliding mesh against the upstream fixed tower domain. Both the blade and tower cross sections are padded with a boundary layer mesh to accurately capture the viscous forces while several levels of refinement were implemented throughout the domain to assess and avoid the mesh dependence.


2016 ◽  
pp. 1264-1278
Author(s):  
Michael A. Erskine ◽  
Will Pepper

This paper presents a novel approach toward facilitating the effective collection and communication of information during an emergency. Initially, this research examines current emergency response information workflows and emergency responder dispatch criteria. A process for the optimization of these workflows and criteria, along with a suggested method to improve data collection accuracy and emergency response time using a mobile device application, are suggested. Specifically, a design-science approach incorporating the development of an expert system designed to facilitate efficient and effective sharing of emergency information is applied. The resulting benefits could improve emergency communications during large-scale international gatherings, such as sporting events or festivals, as well as the sharing of industry-specific safety incidents. A process model for conducting analyses of additional emergency response processes is also presented. Finally, future research directions are discussed.


2019 ◽  
Vol 869 ◽  
pp. 1-26 ◽  
Author(s):  
Daniel Foti ◽  
Xiaolei Yang ◽  
Lian Shen ◽  
Fotis Sotiropoulos

Wake meandering, a phenomenon of large-scale lateral oscillation of the wake, has significant effects on the velocity deficit and turbulence intensities in wind turbine wakes. Previous studies of a single turbine (Kang et al., J. Fluid. Mech., vol. 774, 2014, pp. 374–403; Foti et al., Phys. Rev. Fluids, vol. 1 (4), 2016, 044407) have shown that the turbine nacelle induces large-scale coherent structures in the near field that can have a significant effect on wake meandering. However, whether nacelle-induced coherent structures at the turbine scale impact the emergent turbine wake dynamics at the wind farm scale is still an open question of both fundamental and practical significance. We take on this question by carrying out large-eddy simulation of atmospheric turbulent flow over the Horns Rev wind farm using actuator surface parameterisations of the turbines without and with the turbine nacelle taken into account. While the computed mean turbine power output and the mean velocity field away from the nacelle wake are similar for both cases, considerable differences are found in the turbine power fluctuations and turbulence intensities. Furthermore, wake meandering amplitude and area defined by wake meanders, which indicates the turbine wake unsteadiness, are larger for the simulations with the turbine nacelle. The wake influenced area computed from the velocity deficit profiles, which describes the spanwise extent of the turbine wakes, and the spanwise growth rate, on the other hand, are smaller for some rows in the simulation with the nacelle model. Our work shows that incorporating the nacelle model in wind farm scale simulations is critical for accurate predictions of quantities that affect the wind farm levelised cost of energy, such as the dynamics of wake meandering and the dynamic loads on downwind turbines.


Author(s):  
Manuel Garci´a-Villalba ◽  
Jochen Fro¨hlich ◽  
Wolfgang Rodi

In this paper; the non-reacting flow in a swirl burner is studied using Large Eddy Simulation. The configuration consists of two unconfined co-annular jets at a Reynolds number of 81500. The flow is characterized by a Swirl number of 0.93. Two cases are studied in the paper differing with respect to the axial location of the inner pilot jet. It was observed in a companion experiment (Bender and Bu¨chner, 2005) that when the inner jet is retracted the flow oscillations are considerably amplified. This is also found in the present simulations. Large-scale coherent structures rotating at a constant rate are observed when the inner jet is retracted. The rotation of the structures leads to vigorous oscillations in the velocity and pressure time signals recorded at selected points in the flow. In addition, the mean velocities, the turbulent fluctuations and the frequency of the oscillations are in good agreement with the experiments. A conditional averaging procedure is used to perform a detailed analysis of the physics leading to the low-frequency oscillations.


Sign in / Sign up

Export Citation Format

Share Document