scholarly journals Identification Method for Series Arc Faults Based on Wavelet Transform and Deep Neural Network

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 142 ◽  
Author(s):  
Qiongfang Yu ◽  
Yaqian Hu ◽  
Yi Yang

The power supply quality and power supply safety of a low-voltage residential power distribution system is seriously affected by the occurrence of series arc faults. It is difficult to detect and extinguish them due to the characteristics of small current, high stochasticity, and strong concealment. In order to improve the overall safety of residential distribution systems, a novel method based on discrete wavelet transform (DWT) and deep neural network (DNN) is proposed to detect series arc faults in this paper. An experimental bed is built to obtain current signals under two states, normal and arcing. The collected signals are discomposed in different scales applying the DWT. The wavelet coefficient sequences are used for forming training set and test set. The deep neural network trained by training set under 4 different loads adaptively learn the feature of arc faults. The accuracy of arc faults recognition is sent through feeding test set into the model, about 97.75%. The experimental result shows that this method has good accuracy and generality under different types of loading.

2012 ◽  
Vol 605-607 ◽  
pp. 2265-2269
Author(s):  
Rui Kun Gong ◽  
Ya Nan Zhang ◽  
Chong Hao Wang ◽  
Li Jing Zhao

First, the background, significance and general implementation of the image definition identification are introduced. Then, basic theory of wavelet transform and neural network is expounded. An identification method of image definition based on the composite model of wavelet analysis and neural network is suggested.The two—dimensional discrete wavelet transformation is used to filter image signal and extract its brim character which is input into BP neural network for identification. 4 layers of BP neural network are constructed to perform image definition identification. The compound model is first trained by 90 images from the training set, and then is tested by 87 images from the testing set. The results show that this is a very effective identification method which can obtain a higher recognition rate.


2020 ◽  
pp. 18-28
Author(s):  
Andrei Kliuev ◽  
Roman Klestov ◽  
Valerii Stolbov

The paper investigates the algorithmic stability of learning a deep neural network in problems of recognition of the materials microstructure. It is shown that at 8% of quantitative deviation in the basic test set the algorithm trained network loses stability. This means that with such a quantitative or qualitative deviation in the training or test sets, the results obtained with such trained network can hardly be trusted. Although the results of this study are applicable to the particular case, i.e. problems of recognition of the microstructure using ResNet-152, the authors propose a cheaper method for studying stability based on the analysis of the test, rather than the training set.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4797
Author(s):  
Sanjoy Das ◽  
Padmavathy Kankanala ◽  
Anil Pahwa

Outages in an overhead power distribution system are caused by multiple environmental factors, such as weather, trees, and animal activity. Since they form a major portion of the outages, the ability to accurately estimate these outages is a significant step towards enhancing the reliability of power distribution systems. Earlier research with statistical models, neural networks, and committee machines to estimate weather-related and animal-related outages has reported some success. In this paper, a deep neural network ensemble model for outage estimation is proposed. The entire input space is partitioned with a distinct neural network in the ensemble performing outage estimate in each partition. A novel algorithm is proposed to train the neural networks in the ensemble, while simultaneously partitioning the input space in a suitable manner. The proposed approach has been compared with the earlier approaches for outage estimation for four U.S. cities. The results suggest that the proposed method significantly improves the estimates of outages caused by wind and lightning in power distribution systems. A comparative analysis with a previously published model for animal-related outages further establishes the overall effectiveness of the deep neural network ensemble.


2020 ◽  
Author(s):  
Mustafa Umit Oner ◽  
Yi-Chih Cheng ◽  
Hwee Kuan Lee ◽  
Wing-Kin Sung

This article discusses the effect of segregation of histopathology images data into three sets; training set for training machine learning model, validation set for model selection and test set for testing model performance. We found that one must be cautious when segregating histological images data (slides) into training, validation and test sets because subtle mishandling of data can introduce data leakage and gives illusively good results on the test set. We performed this study on gene mutation prediction performance by using the deep neural network in the paper of Coudray et al. [1]. By using the provided code and the same set of data, we discovered that data segregation method of the paper suffered from a data leakage problem [2]. The paper pools all the slides from all patients and then segregates them exclusively into training, validation and test sets. In this way, none of the slides is used in more than one set. This seems to be a clean separation of the data. However, the paper did not consider that some slides were strongly correlated. For example, if the tumor of a patient is cut and stained to produce multiple slides, these slides are strongly correlated. If one slide is used for training and another one is used for testing, essentially, the deep neural network can memorize the pattern on the slide in the training set and apply this memory on the slide in the test set. Hence, by memorization, the deep neural network can predict very well on the slide in the test set. This mechanism of prediction is not useful in a practical clinical setting since no two tumors are the same in the real world. In this real setting, we demand the deep neural network to generalize across patients and tumors. Hereafter, we call this way of data segregation slide-level segregation. There is a better way to perform data segregation that is compatible for deployment of deep learning model in practical clinical settings. First, the patients are segregated exclusively into training, validation and test sets. All the slides belonging to the patients in the training set are used solely for training. Similarly, all the slides belonging to the patients in the test set are used for testing only. Segregation of data in this way forces the deep neural network to generalize across patients. We call this way of data segregation patient-level segregation.In slide-level segregation approach analysis, we obtained similar results to that presented in the paper by Coudray et al. [1]: overall performance on the test set was good. However, it was illusory due to data leakage. The model gave very good testing results on the slides that come from a patient who also has slides in the training set. On the other hand, the test result was quite bad on the slides that come from a patient who does not have any slides in the training set. Hereafter, we call the slide in the test set as seen-patient data if the corresponding patient also has some slides in the training set. Otherwise, the slide in the test set is called unseen-patient data if the corresponding patient does not have slides in the training set. Furthermore, we analyzed performance of the model on the data segregated by the patient-level segregation approach. Note that, in this approach, all patients in the test set mimics the real world clinical workflow. We observed a significant drop in the performance of the model on the test set of patient-level segregation approach compared to the performance on the test set of slide-level segregation approach. Moreover, the performance of the model on the test set of patient-level segregation approach was very similar to the performance on the unseen-patients data in the test set of slide-level segregation approach. Hence, we conclude that patient-level segregation approach is crucial and appropriate to simulate real world scenario, where each patient in the test set can be thought as a patient walking into clinic tomorrow.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yiqing Hou ◽  
Chao Chen ◽  
Lu Zhang ◽  
Wei Zhou ◽  
Qinyang Lu ◽  
...  

ObjectiveThe aim of this study is to develop a model using Deep Neural Network (DNN) to diagnose thyroid nodules in patients with Hashimoto’s Thyroiditis.MethodsIn this retrospective study, we included 2,932 patients with thyroid nodules who underwent thyroid ultrasonogram in our hospital from January 2017 to August 2019. 80% of them were included as training set and 20% as test set. Nodules suspected for malignancy underwent FNA or surgery for pathological results. Two DNN models were trained to diagnose thyroid nodules, and we chose the one with better performance. The features of nodules as well as parenchyma around nodules will be learned by the model to achieve better performance under diffused parenchyma. 10-fold cross-validation and an independent test set were used to evaluate the performance of the algorithm. The performance of the model was compared with that of the three groups of radiologists with clinical experience of <5 years, 5–10 years, >10 years respectively.ResultsIn total, 9,127 images were collected from 2,932 patients with 7,301 images for the training set and 1,806 for the test set. 56% of the patients enrolled had Hashimoto’s Thyroiditis. The model achieved an AUC of 0.924 for distinguishing malignant and benign nodules in the test set. It showed similar performance under diffused thyroid parenchyma and normal parenchyma with sensitivity of 0.881 versus 0.871 (p = 0.938) and specificity of 0.846 versus 0.822 (p = 0.178). In patients with HT, the model achieved an AUC of 0.924 to differentiate malignant and benign nodules which was significantly higher than that of the three groups of radiologists (AUC = 0.824, 0.857, 0.863 respectively, p < 0.05).ConclusionThe model showed high performance in diagnosing thyroid nodules under both normal and diffused parenchyma. In patients with Hashimoto’s Thyroiditis, the model showed a better performance compared to radiologists with various years of experience.


2018 ◽  
Vol 5 (1) ◽  
pp. 41-46
Author(s):  
Rosalina Rosalina ◽  
Hendra Jayanto

The aim of this paper is to get high accuracy of stock market forecasting in order to produce signals that will affect the decision making in the trading itself. Several experiments by using different methodologies have been performed to answer the stock market forecasting issues. A traditional linear model, like autoregressive integrated moving average (ARIMA) has been used, but the result is not satisfactory because it is not suitable for model financial series. Yet experts are likely observed another approach by using artificial neural networks. Artificial neural network (ANN) are found to be more effective in realizing the input-output mapping and could estimate any continuous function which given an arbitrarily desired accuracy. In details, in this paper will use maximal overlap discrete wavelet transform (MODWT) and graph theory to distinguish and determine between low and high frequencies, which in this case acted as fundamental and technical prediction of stock market trading. After processed dataset is formed, then we will advance to the next level of the training process to generate the final result that is the buy or sell signals given from information whether the stock price will go up or down.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Mohammed Aliy Mohammed ◽  
Fetulhak Abdurahman ◽  
Yodit Abebe Ayalew

Abstract Background Automating cytology-based cervical cancer screening could alleviate the shortage of skilled pathologists in developing countries. Up until now, computer vision experts have attempted numerous semi and fully automated approaches to address the need. Yet, these days, leveraging the astonishing accuracy and reproducibility of deep neural networks has become common among computer vision experts. In this regard, the purpose of this study is to classify single-cell Pap smear (cytology) images using pre-trained deep convolutional neural network (DCNN) image classifiers. We have fine-tuned the top ten pre-trained DCNN image classifiers and evaluated them using five class single-cell Pap smear images from SIPaKMeD dataset. The pre-trained DCNN image classifiers were selected from Keras Applications based on their top 1% accuracy. Results Our experimental result demonstrated that from the selected top-ten pre-trained DCNN image classifiers DenseNet169 outperformed with an average accuracy, precision, recall, and F1-score of 0.990, 0.974, 0.974, and 0.974, respectively. Moreover, it dashed the benchmark accuracy proposed by the creators of the dataset with 3.70%. Conclusions Even though the size of DenseNet169 is small compared to the experimented pre-trained DCNN image classifiers, yet, it is not suitable for mobile or edge devices. Further experimentation with mobile or small-size DCNN image classifiers is required to extend the applicability of the models in real-world demands. In addition, since all experiments used the SIPaKMeD dataset, additional experiments will be needed using new datasets to enhance the generalizability of the models.


Sign in / Sign up

Export Citation Format

Share Document