scholarly journals Belgian Energy Transition: What Are the Options?

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 261
Author(s):  
Gauthier Limpens ◽  
Hervé Jeanmart ◽  
Francois Maréchal

Different scenarios at different scales must be studied to help define long term policies to decarbonate our societies. In this work, we analyse the Belgian energy system in 2035 for different carbon emission targets, and accounting for electricity, heat, and mobility. To achieve this objective, we applied the EnergyScope Typical Days open source model, which optimises both the investment and the operation strategy of a complete energy system for a target year. The model includes 96 technologies and 24 resources that have to supply, hourly, the heat, electricity, mobility, and non-energy demands. In line with other research, we identify and quantify, with a merit order, different technological steps of the energy transition. The lack of endogenous resources in Belgium is highlighted and estimated at 275.6 TWh/y. It becomes obvious that additional potentials shall be obtained by importing renewable fuels and/or electricity, deploying geothermal energy, etc. Aside from a reduction of the energy demand, a mix of solutions is shown to be, by far, the most cost effective to reach low carbon emissions.

2021 ◽  
Author(s):  
Osamah Alsayegh

Abstract This paper examines the energy transition consequences on the oil and gas energy system chain as it propagates from net importing through the transit to the net exporting countries (or regions). The fundamental energy system security concerns of importing, transit, and exporting regions are analyzed under the low carbon energy transition dynamics. The analysis is evidence-based on diversification of energy sources, energy supply and demand evolution, and energy demand management development. The analysis results imply that the energy system is going through technological and logistical reallocation of primary energy. The manifestation of such reallocation includes an increase in electrification, the rise of energy carrier options, and clean technologies. Under healthy and normal global economic growth, the reallocation mentioned above would have a mild effect on curbing the oil and gas primary energy demands growth. A case study concerning electric vehicles, which is part of the energy transition aspect, is presented to assess its impact on the energy system, precisely on the fossil fuel demand. Results show that electric vehicles are indirectly fueled, mainly from fossil-fired power stations through electric grids. Moreover, oil byproducts use in the electric vehicle industry confirms the reallocation of the energy system components' roles. The paper's contribution to the literature is the portrayal of the energy system security state under the low carbon energy transition. The significance of this representation is to shed light on the concerns of the net exporting, transit, and net importing regions under such evolution. Subsequently, it facilitates the development of measures toward mitigating world tensions and conflicts, enhancing the global socio-economic wellbeing, and preventing corruption.


2021 ◽  
Vol 73 (05) ◽  
pp. 32-35
Author(s):  
Judy Feder

Is green H2 better than blue? Is gray going away? As the world transitions from “black gold” to greener alternatives, many questions are being raised about hydrogen (H2) and its role in the current and future energy mix. H2 was among the “hot topics” during the 2021 CERAWeek by IHS Markit held virtually in March. The global energy research firm estimated that hydrogen currently costs $200 to $250/bbl to produce—as much as five times the cost to produce a barrel of oil. Low-carbon hydrogen has a tiny share of the global energy market today, but investors are betting on its long-term potential, according to Wood Mackenzie, who said shares with meaningful exposure to hydrogen have been among the best-performing of energy transition stocks in the past few months. By 2050, low-carbon hydrogen will constitute 7% of global energy demand—211 Mt—from practically zero today. For this and other reasons, many oil companies are researching and investing in hydrogen projects. IHS Markit believes that energy companies will invest $5 billion to $10 billion in hydrogen of various colors over the next 5 years, helping to develop breakthrough technologies that will reduce its cost and increase its competitiveness, not only with renewables such as wind and solar, but eventually with oil and natural gas. Paul Browning, president and chief executive officer of Mitsubishi Power Americas, said, “What’s really driving green hydrogen is net zero, from regulators to shareholders. There is no way to get to net zero without long-term storage, and for that, we need hydrogen,” he said. “Green H2 will be used as storage first. Then its cost will decline enough to make it a fuel.” But green won’t be the only player. Blue and green are at the basis of different perspectives of a potential hydrogen society, according to a paper recently published in an environmental research journal Sustainability. Blue hydrogen, integrated with carbon capture and storage, can provide the scale and reliability needed by industrial processes. It can also play an essential role in decarbonizing hard-to-electrify industries and driving down the cost of the energy transition. And it can represent a useful option in the short and medium term by helping pave the way for green hydrogen at a later stage (Fig. 1). Armin Schnettler, executive vice president of new energy business for Siemens Energy, said at CERAWeek, “Short-term color isn’t important. What is important is a hydrogen economy, dedicated to green H2. In the short term, we should be ready to support all colors.” Moving From Talk to Action Hydrogen’s potential role in national and international decarbonization strategies is growing for sectors ranging from industry to transport. Already used as a feedstock in industrial applications, it is now being proposed as a potential energy carrier to support wider deployment of low-carbon energy.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4402
Author(s):  
Chun-Kai Wang ◽  
Chien-Ming Lee ◽  
Yue-Rong Hong ◽  
Kan Cheng

Energy transition has become a priority for adaptive policy and measures taken in response to climate change around the world. This is an opportunity and a challenge for the Taiwan government to establish a climate-resilient power generation mixed to ensure electricity security as well as climate change mitigation. This study adopted a sustainable development perspective and applied optimal control theory to establish a cost-effective model to evaluate a long-term (2050), climate-resilient power generation mix for Taiwan. Furthermore, this study applies the STIRPAT approach to predict the demand of electricity by 2050 for the demand side management. The results not only showed the share of various power generation mixed, but also recommended the trajectory of electricity saving by 2050.


2021 ◽  
Author(s):  
Sam Jones ◽  
Adam Joyce ◽  
Nikhil Balasubramanian

Abstract Objectives/Scope There are many different views on the Energy Transition. What is agreed is that to achieve current climate change targets, the journey to deep decarbonisation must start now. Scope 3 emissions are clearly the major contributor to total emissions and must be actively reduced. However, if Oil and Gas extraction is to be continued, then operators must understand, measure, and reduce Scope 1 and 2 emissions. This paper examines the constituent parts of typical Scope 1 emissions for O&G assets and discusses a credible pathway and initial steps towards decarbonisation of operations. Methods, Procedures, Process Emissions from typical assets are investigated: data is examined to determine the overall and individual contributions of Scope 1 emissions. A three tiered approach to emissions savings is presented: – Reduce overall energy usage – Seek to Remove environmental losses – Replace energy supply with low carbon alternatives A simple method, used to assess carbon emissions, based on an abatement of carbon from a cost per CO2 tonne averted basis is described. This method, Marginal Abatement Cost Curve (MACC), is based solely on cost efficiency. Other criteria such as safety, weight, footprint and reliability are not considered. Credible pathway for reduction of Scope 1 emissions is presented. Taking appropriate actions as described in the pathway, contributors are eliminated in a strategic order, allowing operators to contribute to deep decarbonisation. Results, Observations, Conclusions A typical offshore installation was modelled with a number of carbon abatement measures implemented. Results are presented as cost effective or non-cost-effective CO2 measures together with the residual CO2 emissions. Based on the data presented, many of the replace measures have a higher cost per tonne of CO2 abated than reduce and remove measure. These findings indicate that additional technological advancement may be needed to make alternative power solutions commercially viable. It also indicates that several CO2 abatement measures are cost effective today. The pathway proposes actions to implement carbon savings for offshore operators, it differentiates actions which can be taken today and those which require further technological advancement before they become commercially viable. The intent of this pathway is to demonstrate that the energy transition is not solely the preserve of the largest operators and every company can take positive steps towards supporting decarbonisation. Novel/Additive Information The world needs security of energy supply. Hydrocarbons are still integral; however, oil and gas operators must contribute to carbon reduction for society to meet the energy transition challenges. As government and societal appetite for decarbonisation heightens, demands are growing for traditional hydrocarbon assets to reduce their carbon footprint if they are to remain part of the energy mix. Society and therefore regulators will demand that more is done to address emissions during this transitional phase, consequently necessitating that direct emissions are reduced as much as possible. The pathway is accessible to all today, we need not wait for novel technologies to act.


2021 ◽  
Author(s):  
Henry Lee ◽  
Daniel P. Schrag ◽  
Matthew Bunn ◽  
Michael Davidson ◽  
Wei Peng ◽  
...  

Climate change is a key problem of the 21st century. China, as the largest emitter of greenhouse gases, has committed to stabilize its current emissions and dramatically increase the share of electricity production from non-fossil fuels by 2030. However, this is only a first step: in the longer term, China needs to aggressively strive to reach a goal of zero-emissions. Through detailed discussions of electricity pricing, electric vehicle policies, nuclear energy policies, and renewable energy policies, this book reviews how near-term climate and energy policies can affect long-term decarbonization pathways beyond 2030, building the foundations for decarbonization in advance of its realization. Focusing primarily on the electricity sector in China - the main battleground for decarbonization over the next century – it provides a valuable resource for researchers and policymakers, as well as energy and climate experts.


Author(s):  
Doudou Nanitamo Luta ◽  
Atanda K. Raji

Hydrogen is likely to play a significant role in the concept of low-carbon power generation in support to renewable energy systems. It is abundant, eco-friendly, highly efficient and have the potential to be more cost-effective than fossil fuels provided that the engineering challenges associated with its safe infrastructure development, economical extraction and storage are solved. Presently, about 50 million metric tons of hydrogen is generated on a yearly basis, most of that is used for oil refining and ammoniac production. Other applications include electric vehicles, power to gas and power generation, etc. This study focuses on the use of hydrogen for power generation. The main goal is to investigate technical and economic performances of a renewable hydrogen-based energy system as an alternative to diesel generators for powering a remote telecoms base station. The proposed energy system consists of a photovoltaic generator, an electrolyser, a fuel cell, a hydrogen tank, a battery storage system and a power-conditioning unit. The system is simulated using Homer Pro software.


2019 ◽  
Vol 110 ◽  
pp. 02030
Author(s):  
Olga Kalchenko ◽  
Svetlana Evseeva ◽  
Oksana Evseeva ◽  
Kristina Plis

The pathway to a low-carbon future is circular. Circular economy and the optimization of resources used in the energy system can be seen as a way to improve energy self-sufficiency. In St. Petersburg, stakeholders of International Innovation Forum and International Economic Forum 2018 have discussed foreign experience and circular economy in Russia, and found several solutions. Representatives from Business Finland partnership shared their experience – how environmentally friendly technologies become profitable business. FIRO-O, OptiKom, Charity second-hand store “Spasibo”, Baltika Brewery (Carlsberg group) and St. Petersburg Urban Eco-Cluster are given as successful examples of circular economy principles in Russia and St. Petersburg. Moscow and Saint Petersburg have different programs under the local authorities’ support in the sphere of environmentally-friendly development. Infrastructure of the Russian regions needs more attention and support from all the stakeholders: the business, the government and the society. The triangle cooperation (business-government-society) is needed. Russian company’s cooperation and integration into the global networks of ecologically responsible businesses could lead to the easier and faster solutions.


Author(s):  
G. R. Tynan ◽  
A. Abdulla

We examine the characteristics that fusion-based generation technologies will need to have if they are to compete in the emerging low-carbon energy system of the mid-twenty-first century. It is likely that the majority of future electric energy demand will be provided by the lowest marginal cost energy technology—which in many regions will be stochastically varying renewable solar and wind electric generation coupled to systems that provide up to a few days of energy storage. Firm low-carbon or zero-carbon resources based on gas-fired turbines with carbon capture, advanced fission reactors, hydroelectric and perhaps engineered geothermal systems will then be used to provide the balance of load in a highly dynamic system operating in competitive markets governed by merit-order pricing mechanisms that select the lowest-cost supplies to meet demand. These firm sources will have overnight capital costs in the range of a few $/Watt, be capable of cycling down to a fraction of their maximum power output, operate profitably at low utilization fraction, and have a suitable unit size of order 100 MW e . If controlled fusion using either magnetic confinement or inertial confinement approaches is to have any chance of providing a material contribution to future electrical energy needs, it must demonstrate these key qualities and at the same time prove robust safety characteristics that avoid the perceived dread risk that plagues nuclear fission power, avoid the generation of long-lived radioactive waste and demonstrate highly reliable operations. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 1)’.


Author(s):  
Barbara Pawłowska

The Energy Union is aimed at providing secure, sustainable, competitive energy to the EU population at affordable prices. A thorough transformation of the European energy system is required to accomplish this goal. The Energy Union is an important project which is supposed to set a new direction and a clear long-term vision for the European energy and climate policy. Transport is one of the key sectors in terms of energy consumption. In 2015, 94% of the energy used transport originated from crude oil and the sector’s share in the total energy consumption was 34% (Eurostat, 2016). The aim of the article is to show the activities in respect of the implementation of the “Clean Energy for Transport” package and its importance for the implementation of the Energy Union objectives. The development of an alternative fuel market should reduce the dependence on oil and contribute to increased security of the energy supply for Europe, promote economic growth and reduce greenhouse gas emissions in transport. Tools aimed at supporting the transition to low-carbon economy will be analyzed in the article. The scope of popularization of alternative fuels is determined to a large extent by market conditions and the extent to which an adequate infrastructure is developed. Hence, particular emphasis will be placed on the priorities for the development of technology and research, technical integration of solutions and financial support for alternative fuels.


Author(s):  
David J. C. MacKay

While the main thrust of the Discussion Meeting Issue on ‘Material efficiency: providing material services with less material production’ was to explore ways in which society's net demand for materials could be reduced, this review examines the possibility of converting industrial energy demand to electricity, and switching to clean electricity sources. This review quantifies the scale of infrastructure required in the UK, focusing on wind and nuclear power as the clean electricity sources, and sets these requirements in the context of the decarbonization of the whole energy system using wind, biomass, solar power in deserts and nuclear options. The transition of industry to a clean low-carbon electricity supply, although technically possible with several different technologies, would have very significant infrastructure requirements.


Sign in / Sign up

Export Citation Format

Share Document