scholarly journals A Layered Bidirectional Active Equalization Method for Retired Power Lithium-Ion Batteries for Energy Storage Applications

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 832 ◽  
Author(s):  
Yang Yang ◽  
Wenchao Zhu ◽  
Changjun Xie ◽  
Ying Shi ◽  
Furong Liu ◽  
...  

The power from lithium-ion batteries can be retired from electric vehicles (EVs) and can be used for energy storage applications when the residual capacity is up to 70% of their initial capacity. The retired batteries have characteristics of serious inconsistency. In order to solve this problem, a layered bidirectional active equalization topology is proposed in this paper. Specifically, a bridge-type equalization topology based on an inductor is adopted in the bottom layer, and the distributed equalization topological structure based on the bidirectional BUCK-BOOST circuit is adopted in the top layer. State of charge (SOC) is used as the equalization target variable, and the bottom layer equalization algorithm based on a “partition” idea and route optimization is proposed. The static equalization experiments and charge equalization experiments are performed by the 12 retired batteries selected from an electric sanitation vehicle. The results show that the proposed equalization method can reduce the SOC difference between retired batteries and can effectively improve the inconsistency of the retired battery pack with a faster equalization speed.

Author(s):  
Jacqueline Sophie Edge ◽  
Simon O'Kane ◽  
Ryan Prosser ◽  
Niall D. Kirkaldy ◽  
Anisha N Patel ◽  
...  

The expansion of lithium-ion batteries from consumer electronics to larger-scale transport and energy storage applications has made understanding the many mechanisms responsible for battery degradation increasingly important. The literature in...


2019 ◽  
Vol 7 (9) ◽  
pp. 4334-4352 ◽  
Author(s):  
Yan-Song Xu ◽  
Shu-Yi Duan ◽  
Yong-Gang Sun ◽  
De-Shan Bin ◽  
Xian-Sen Tao ◽  
...  

Due to their abundant resources and potential price advantage, potassium-ion batteries (KIBs) have recently drawn increasing attention as a promising alternative to lithium-ion batteries (LIBs) for their applications in electrochemical energy storage applications.


RSC Advances ◽  
2021 ◽  
Vol 11 (56) ◽  
pp. 35440-35454
Author(s):  
Shakir Bin Mujib ◽  
François Ribot ◽  
Christel Gervais ◽  
Gurpreet Singh

Fabrication of precursor-derived ceramic fibers as electrodes for energy storage applications remains largely unexplored.


2020 ◽  
Vol 8 (34) ◽  
pp. 17595-17607 ◽  
Author(s):  
Fekadu Wubatu Fenta ◽  
Bizualem Wakuma Olbasa ◽  
Meng-Che Tsai ◽  
Misganaw Adigo Weret ◽  
Tilahun Awoke Zegeye ◽  
...  

Rechargeable aqueous zinc-ion batteries (ZIBs) are emerging as an alternative to lithium-ion batteries in large-scale energy storage applications due to their safety and environmental friendliness.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 207
Author(s):  
Jianwen Cao ◽  
Bizhong Xia ◽  
Jie Zhou

The inconsistency in large-scale battery pack significantly degrades the performance of electric vehicles. In order to diminish the inconsistency, the study designs an active equalization method comprising of equalizer and equalization strategy for lithium-ion batteries. A bidirectional flyback transformer equalizer (BFTE) is designed and analyzed. The BFTE is controlled by a pulse width modulation (PWM) controller to output designated balancing currents. Under the purpose of shortening equalization time and reducing energy consumption during the equalization process, this paper proposes an equalization strategy based on variable step size generalized predictive control (VSSGPC). The VSSGPC is improved on the generalized predictive control (GPC) by introducing the Step Size Factor. The VSSGPC surmounts the local limitation of GPC by expanding the control and output horizons to the global equalization process without increasing computation owing to the Step Size Factor. The experiment results in static operating condition indicate that the equalization time and energy consumption are reduced by 8.3% and 16.5%, respectively. Further validation in CC-CV and EUDC operating conditions verifies the performance of the equalizer and rationality of the VSSGPC strategy.


Author(s):  
Honglei Li ◽  
Liang Cong ◽  
Huazheng Ma ◽  
Weiwei Liu ◽  
Yelin Deng ◽  
...  

Abstract The rapidly growing deployment of lithium-ion batteries in electric vehicles is associated with a great waste of natural resource and environmental pollution caused by manufacturing and disposal. Repurposing the retired lithium-ion batteries can extend their useful life, creating environmental and economic benefits. However, the residual capacity of retired lithium-ion batteries is unknown and can be drastically different owing to various working history and calendar life. The main objective of this paper is to develop a fast and accurate capacity estimation method to classify the retired batteries by the remaining capacity. The hybrid technique of adaptive genetic algorithm and back propagation neural network is developed to estimate battery remaining capacity using the training set comprised of the selected characteristic parameters of incremental capacity curve of battery charging. Also, the paper investigated the correlation between characteristic parameters with capacity fade. The results show that capacity estimation errors of the proposed neural network are within 3%. Peak intensity of the incremental capacity curve has strong correlation with capacity fade. The findings also show that the translation of peak of the incremental capacity curve is strongly related with internal resistance.


Sign in / Sign up

Export Citation Format

Share Document