scholarly journals An MPC-Sliding Mode Cascaded Control Architecture for PV Grid-Feeding Inverters

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2326 ◽  
Author(s):  
Alessandro Palmieri ◽  
Alessandro Rosini ◽  
Renato Procopio ◽  
Andrea Bonfiglio

The primary regulation of photovoltaic (PV) systems is a current matter of research in the scientific community. In Grid-Feeding operating mode, the regulation aims to track the maximum power point in order to fully exploit the renewable energy sources and produce the amount of reactive power ordered by a hierarchically superior control level or by the local Distribution System Operator (DSO). Actually, this task is performed by Proportional–Integral–Derivative (PID)-based regulators, which are, however, affected by major drawbacks. This paper proposes a novel control architecture involving advanced control theories, like Model Predictive Control (MPC) and Sliding Mode (SM), in order to improve the overall system performance. A comparison with the conventional PID-based approach is presented and the control theories that display a better performance are highlighted.

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4028 ◽  
Author(s):  
Abreu ◽  
Soares ◽  
Carvalho ◽  
Morais ◽  
Simão ◽  
...  

Challenges in the coordination between the transmission system operator (TSO) and the distribution system operator (DSO) have risen continuously with the integration of distributed energy resources (DER). These technologies have the possibility to provide reactive power support for system operators. Considering the Portuguese reactive power policy as an example of the regulatory framework, this paper proposes a methodology for proactive reactive power management of the DSO using the renewable energy sources (RES) considering forecast uncertainty available in the distribution system. The proposed method applies a stochastic sequential alternative current (AC)-optimal power flow (SOPF) that returns trustworthy solutions for the DSO and optimizes the use of reactive power between the DSO and DER. The method is validated using a 37-bus distribution network considering real data. Results proved that the method improves the reactive power management by taking advantage of the full capabilities of the DER and by reducing the injection of reactive power by the TSO in the distribution network and, therefore, reducing losses.


Author(s):  
M.Balasubramanian Et.al

The aim of this paper is to use renewable energy sources to meet the demand for electricity. For DC-AC conversion, a solar-powered three-phase grid-connected system with a boost (DC-DC) converter and three-phase inverter is used. The updated Perturb and Observe (P&O) Algorithm is used to map the solar photovoltaic system's maximum power point. Synchronous Reference Frame-Phase Locked Loop Theory is used to compensate for harmonic and reactive power. This proposed grid-connected system is used to improve the system's power efficiency as well as extract the full power and feed it to the distribution system. Using Matlab tools, the simulation result demonstrates reasonable efficiency.


Author(s):  
Akram Qashou ◽  
Sufian Yousef ◽  
Abdallah A. Smadi ◽  
Amani A. AlOmari

AbstractThe purpose of this paper is to describe the design of a Hybrid Series Active Power Filter (HSeAPF) system to improve the quality of power on three-phase power distribution grids. The system controls are comprise of Pulse Width Modulation (PWM) based on the Synchronous Reference Frame (SRF) theory, and supported by Phase Locked Loop (PLL) for generating the switching pulses to control a Voltage Source Converter (VSC). The DC link voltage is controlled by Non-Linear Sliding Mode Control (SMC) for faster response and to ensure that it is maintained at a constant value. When this voltage is compared with Proportional Integral (PI), then the improvements made can be shown. The function of HSeAPF control is to eliminate voltage fluctuations, voltage swell/sag, and prevent voltage/current harmonics are produced by both non-linear loads and small inverters connected to the distribution network. A digital Phase Locked Loop that generates frequencies and an oscillating phase-locked output signal controls the voltage. The results from the simulation indicate that the HSeAPF can effectively suppress the dynamic and harmonic reactive power compensation system. Also, the distribution network has a low Total Harmonic Distortion (< 5%), demonstrating that the designed system is efficient, which is an essential requirement when it comes to the IEEE-519 and IEC 61,000–3-6 standards.


2021 ◽  
Vol 22 (1) ◽  
pp. 113-127
Author(s):  
Mulualem Tesfaye ◽  
Baseem Khan ◽  
Om Prakash Mahela ◽  
Hassan Haes Alhelou ◽  
Neeraj Gupta ◽  
...  

Abstract Generation of renewable energy sources and their interfacing to the main system has turn out to be most fascinating challenge. Renewable energy generation requires stable and reliable incorporation of energy to the low or medium voltage networks. This paper presents the microgrid modeling as an alternative and feasible power supply for Institute of Technology, Hawassa University, Ethiopia. This microgrid consists of a 60 kW photo voltaic (PV) and a 20 kW wind turbine (WT) system; that is linked to the electrical distribution system of the campus by a 3-phase pulse width modulation scheme based voltage source inverters (VSI) and supplying power to the university buildings. The main challenge in this work is related to the interconnection of microgrid with utility grid, using 3-phase VSI controller. The PV and WT of the microgrid are controlled in active and reactive power (PQ) control mode during grid connected operation and in voltage/frequency (V/F) control mode, when the microgrid is switched to the stand-alone operation. To demonstrate the feasibility of proposed microgrid model, MATLAB/Simulink software has been employed. The performance of fully functioning microgrid is analyzed and simulated for a number of operating conditions. Simulation results supported the usefulness of developed microgrid in both mode of operation.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4437
Author(s):  
Habib Benbouhenni ◽  
Nicu Bizon

A synergetic sliding mode (SSM) approach is designed to address the drawbacks of the direct field-oriented control (DFOC) of the induction generators (IGs) integrated into variable speed dual-rotor wind power (DRWP) systems with the maximum power point tracking (MPPT) technique. Using SSM controllers in the DFOC strategy, the active power, electromagnetic torque, and reactive power ripples are reduced compared to traditional DFOC using proportional-integral (PI) controllers. This proposed strategy, associated with SSM controllers, produces efficient state estimation. The effectiveness of the designed DFOC strategy has been evaluated on variable speed DRWP systems with the MPPT technique.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4949
Author(s):  
Haonan Wang ◽  
Markus Kraiczy ◽  
Denis Mende ◽  
Sebastian Stöcklein ◽  
Martin Braun

Due to higher penetration of renewable energy sources, grid reinforcements, and the utilization of local voltage control strategies, a significant change in the reactive power behavior as well as an increased demand for additional reactive power flexibility in the German power system can be predicted. In this paper, an application-oriented reactive power management concept is proposed, which allows distribution system operators (DSO) to enable a certain amount of reactive power flexibility at the grid interfaces while supporting voltage imitations in the grid. To evaluate its feasibility, the proposed concept is applied for real medium voltage grids in the south of Germany and is investigated comprehensively in different case studies. The results prove the feasibility and reliability of the proposed concept, which allows the DSO to control the reactive power exchange at grid interfaces without causing undesired local voltage problems. In addition, it can be simply adjusted and widely applied in real distribution grids without requiring high investment costs for complex information and communication infrastructures. As a significant contribution, this study provides an ideal bridging solution for DSOs who are facing reactive power issues but have no detailed and advanced monitoring system for their grid. Moreover, the comprehensive investigations in this study are performed in close cooperation with a German DSO, based on a detailed grid model and real measurement data.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3442
Author(s):  
Fábio Retorta ◽  
João Aguiar ◽  
Igor Rezende ◽  
José Villar ◽  
Bernardo Silva

This paper proposes a near to real-time local market to provide reactive power to the transmission system operator (TSO), using the resources connected to a distribution grid managed by a distribution system operator (DSO). The TSO publishes a requested reactive power profile at the TSO-DSO interface for each time-interval of the next delivery period, so that market agents (managing resources of the distribution grid) can prepare and send their bids accordingly. DSO resources are the first to be mobilized, and the remaining residual reactive power is supplied by the reactive power flexibility offered in the local reactive market. Complex bids (with non-curtailability conditions) are supported to provide flexible ways of bidding fewer flexible assets (such as capacitor banks). An alternating current (AC) optimal power flow (OPF) is used to clear the bids by maximizing the social welfare to supply the TSO required reactive power profile, subject to the DSO grid constraints. A rolling window mechanism allows a continuous dispatching of reactive power, and the possibility of adapting assigned schedules to real time constraints. A simplified TSO-DSO cost assignment of the flexible reactive power used is proposed to share for settlement purposes.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 419
Author(s):  
Mads Nannestad ◽  
Zhe Zhang ◽  
Jundi Jia ◽  
Emil Jensen ◽  
Peter Randewijk

This paper investigates the reactive power balance of the Zealand side of the Danish transmission system (DK2) by using QV-curves. The study is performed in cooperation with Energinet, who is the Danish transmission system operator (TSO). Firstly, this paper aims to map the reactive power balance with the current challenges in the system, which appears due to a decision of changing overhead lines in the scenic area to cables. Secondly, a method is derived for obtaining a comprehensive overview of the impacts that future projects might have on the system. By dividing the transmission system into smaller areas, it is possible to analyze how the reactive power will affect the voltage; moreover, it is favorable to analyze and handle the challenges in the reactive power balance locally. This helps the TSO to quickly determine the lack of reactive power devices and issues that might occur in future expansions of the system. For this paper, a full-scale model of DK2 and SCADA-data has been utilized. It covers the period from 01-01-2016 to 20-08-2017 between the TSO and the Distribution System Operator (DSO). The studies have shown how the location of the wind production will create issues in the reactive power balance.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3364 ◽  
Author(s):  
Francisco García-López ◽  
Manuel Barragán-Villarejo ◽  
Alejandro Marano-Marcolini ◽  
José Maza-Ortega ◽  
José Martínez-Ramos

This paper assesses the behaviour of active distribution networks with high penetration of renewable energy sources when the control is performed in a centralised manner. The control assets are the on-load tap changers of transformers at the primary substation, the reactive power injections of the renewable energy sources, and the active and reactive power exchanged between adjacent feeders when they are interconnected through a DC link. A scaled-down distribution network is used as the testbed to emulate the behaviour of an active distribution system with massive penetration of renewable energy resources. The laboratory testbed involves hardware devices, real-time control, and communication infrastructure. Several key performance indices are adopted to assess the effects of the different control actions on the system’s operation. The experimental results demonstrate that the combination of control actions enables the optimal integration of a massive penetration of renewable energy.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6327
Author(s):  
Bartłomiej Mroczek ◽  
Paweł Pijarski

A significant challenge for the DSO (Distribution System Operator) will be to choose the optimum strategy for flexibility service in the LV area with high RES (renewable energy sources) penetration. To this end, a representative LV grid operated in Poland was selected for analysis. Three research scenarios with RES generation were presented in the range of 1–8 kW for the power factor from 0.9 to 1. The grid PV capacity was determined for four load profiles. Based on this factor, optimum RES volume management service types were determined. Under the flexibility service, the proposed power conversion services and active RES operations for DOS were proposed. The research was conducted using the Matlab and PowerWorld Simulator environment. Optimum active power values were obtained for the RES generation function for single and dual operation systems of the power conversion system. In future, the knowledge in the field of grid capacity will enable the DSO to increase the operating efficiency of the LV grid. It will enable the optimum use of the RES generation maximisation function and proper strategy selection. It will improve the energy efficiency of the power input through the MV/LV node.


Sign in / Sign up

Export Citation Format

Share Document