scholarly journals Quantifying Public Preferences for Community-Based Renewable Energy Projects in South Korea

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2384 ◽  
Author(s):  
Rahel Renata Tanujaya ◽  
Chul-Yong Lee ◽  
JongRoul Woo ◽  
Sung-Yoon Huh ◽  
Min-Kyu Lee

Under the new climate regime, renewable energy (RE) has received particular attention for mitigating the discharge of greenhouse gas. According to the third energy master plan in South Korea, by 2040, 30–35% of the energy demand must met with RE sources. To ensure relevant policy design to achieve this goal, it is crucial to analyze the public’s willingness to accept community-based RE projects. This study conducted a nationwide survey to understand the opinion of the public and also that of local inhabitants living near a RE project. A choice experiment was employed to measure public preferences toward RE projects. The analysis reveals that the type of energy source, distance to a residential area, and annual percentage incentives could affect acceptance levels. Additionally, investment levels were a factor in local inhabitants’ acceptance of energy-related projects. This study presents the relevant policy implications in accordance with the analysis results.

2018 ◽  
Vol 29 (7) ◽  
pp. 1298-1315 ◽  
Author(s):  
Seong-Hoon Lee ◽  
Yonghun Jung

This paper examines the causal relationship between renewable energy consumption and economic growth in South Korea using a framework of the conventional neo-classical production function of capital, labor, and renewable energy. We use cointegration technique of the autoregressive distributed lag bounds test and vector error correction mechanism causality tests to determine the econometric relationship, using data for the period 1990–2012; the results support the conservation hypothesis for South Korea. The results of the autoregressive distributed lag bounds test show that renewable energy consumption has a negative effect on economic growth, and the results of a vector error correction mechanism causality tests indicate a unidirectional relationship from economic growth to renewable energy consumption. The empirical results imply that economic growth is a direct driver expanding renewable energy use. In terms of policy implications, it is best for policy makers to focus on overall economic growth rather than expanding renewable energy to drive economic growth.


2020 ◽  
Author(s):  
Olivia Muza ◽  
Ramit Debnath

Rural off-grid renewable energy solutions often fail due to uncertainties in household energy demand, insufficient community engagement, inappropriate financial models, policy inconsistency and lack of political will. Social shaping of technology (SST) of specific household electric appliances provides a critical lens of understanding the involved socio-technical drivers behind these constraints. This study employs an SST lens to investigate appliance uptake drivers in Rwanda using the EICV5 micro dataset, such that these drivers can aid in policy design of a socially inclusive renewable energy transition. The methodology includes a systemic and epistemological review of current literature on the drivers of appliance uptake in the Global South. These drivers were then analysed using binary logistic regression on 14,580 households. Results show that appliance uptake is highly gendered in Rwanda and the type of appliance determines its diffusion across the welfare categories, commonly referred as to Ubudehe categories. Regression results show that mobile phones, radios and TV-sets have a higher likelihood of ownership than welfare appliances (refrigerator and laundry machine) by low-income households. There is also a high likelihood of uptake of power stabilisers in urban areas, indicating poor power quality. Policy implications were drawn using the lens of disruptive innovation.


2020 ◽  
Vol 91 (6) ◽  
pp. AB591-AB592
Author(s):  
Ratha-Korn Vilaichone ◽  
Natsuda Aumpan ◽  
Tomohisa Uchida ◽  
Thawee Ratanachu-ek ◽  
Lotay Tshering ◽  
...  

2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1988
Author(s):  
Ioannis E. Kosmadakis ◽  
Costas Elmasides

Electricity supply in nonelectrified areas can be covered by distributed renewable energy systems. The main disadvantage of these systems is the intermittent and often unpredictable nature of renewable energy sources. Moreover, the temporal distribution of renewable energy may not match that of energy demand. Systems that combine photovoltaic modules with electrical energy storage (EES) can eliminate the above disadvantages. However, the adoption of such solutions is often financially prohibitive. Therefore, all parameters that lead to a functionally reliable and self-sufficient power generation system should be carefully considered during the design phase of such systems. This study proposes a sizing method for off-grid electrification systems consisting of photovoltaics (PV), batteries, and a diesel generator set. The method is based on the optimal number of PV panels and battery energy capacity whilst minimizing the levelized cost of electricity (LCOE) for a period of 25 years. Validations against a synthesized load profile produced grid-independent systems backed by different accumulator technologies, with LCOEs ranging from 0.34 EUR/kWh to 0.46 EUR/kWh. The applied algorithm emphasizes a parameter of useful energy as a key output parameter for which the solar harvest is maximized in parallel with the minimization of the LCOE.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2045
Author(s):  
Pierpaolo Garavaso ◽  
Fabio Bignucolo ◽  
Jacopo Vivian ◽  
Giulia Alessio ◽  
Michele De Carli

Energy communities (ECs) are becoming increasingly common entities in power distribution networks. To promote local consumption of renewable energy sources, governments are supporting members of ECs with strong incentives on shared electricity. This policy encourages investments in the residential sector for building retrofit interventions and technical equipment renovations. In this paper, a general EC is modeled as an energy hub, which is deemed as a multi-energy system where different energy carriers are converted or stored to meet the building energy needs. Following the standardized matrix modeling approach, this paper introduces a novel methodology that aims at jointly identifying both optimal investments (planning) and optimal management strategies (operation) to supply the EC’s energy demand in the most convenient way under the current economic framework and policies. Optimal planning and operating results of five refurbishment cases for a real multi-family building are found and discussed, both in terms of overall cost and environmental impact. Simulation results verify that investing in building thermal efficiency leads to progressive electrification of end uses. It is demonstrated that the combination of improvements on building envelope thermal performances, photovoltaic (PV) generation, and heat pump results to be the most convenient refurbishment investment, allowing a 28% overall cost reduction compared to the benchmark scenario. Furthermore, incentives on shared electricity prove to stimulate higher renewable energy source (RES) penetration, reaching a significant reduction of emissions due to decreased net energy import.


2021 ◽  
Vol 13 (7) ◽  
pp. 3933
Author(s):  
Solomon E. Uhunamure ◽  
Karabo Shale

South Africa is been faced with erratic power supply, resulting in persistent load shedding due to ageing in most of its coal-fired power plants. Associated with generating electricity from fossil fuel are environmental consequences such as greenhouse emissions and climate change. On the other hand, the country is endowed with abundant renewable energy resources that can potentially ameliorate its energy needs. This article explores the viability of renewable energy using the strengths, weaknesses, opportunities and threats (SWOT) analysis approach on the key renewable potential in the country. The result indicates that geographic position, political and economic stability and policy implementation are some of the strengths. However, Government bureaucratic processes, level of awareness and high investment cost are some of the weaknesses. Several opportunities favour switching to renewable energy, and these include regional integration, global awareness on climate change and the continuous electricity demand. Some threats hindering the renewable energy sector in the country include land ownership, corruption and erratic climatic conditions. Some policy implications are suggested based on the findings of the study.


Sign in / Sign up

Export Citation Format

Share Document