scholarly journals The Effects of Gravity on the Pressure Drop and Heat Transfer Characteristics of Steam in Microchannels: An Experimental Study

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3575 ◽  
Author(s):  
Minhhung Doan ◽  
Thanhtrung Dang ◽  
Xuanvien Nguyen

Experiments were carried out to investigate the pressure drop and heat transfer behaviors of a microchannel condenser. The effects of gravity on the condensation of steam in the microchannels were investigated for both horizontal and vertical cases. For the experimental results, the pressure drop of vertical microchannels in the condenser is lower than for horizontal microchannels. In the case of the horizontal microchannel, as the mass flow rate of steam increases from 0.01 g·s−1 to 0.06 g·s−1, the pressure drop increases from 1.5 kPa to 50 kPa, respectively. While the mass flow rate of steam in the vertical microchannel case increases from 0.01 g·s−1 to 0.06 g·s−1, the pressure drop increases from 2.0 kPa to 44 kPa, respectively. This clearly indicates that the gravitational acceleration affects the pressure drop. The pressure drop of the vertical microchannel is lower than that obtained from the horizontal microchannel. In addition, the capacity of the condenser is the same in both cases. This leads to the performance index obtained from the vertical microchannel condenser being higher than that obtained from the horizontal microchannel condenser. These results are important contributions to the research on the condensation of steam in microchannels.

2016 ◽  
Vol 836 ◽  
pp. 102-108
Author(s):  
Mirmanto ◽  
Emmy Dyah Sulistyowati ◽  
I Ketut Okariawan

In the rainy season, in tropical countries, to dry stuffs is difficult. Using electrical power or fossil energy is an expensive way. Therefore, it is wise to utilize heat waste. A device that can be used for this purpose is called radiator. The effect of mass flow rate on pressure drop and heat transfer for a dryer room radiator have been experimentally investigated. The room model size was 1000 mm x 1000 mm x 1000 mm made of plywood and the overall radiator dimension was 360 mm x 220 mm x 50 mm made of copper pipes with aluminium fins. Three mass flow rates were investigated namely 12.5 g/s, 14 g/s and 16.5 g/s. The water temperature at the entrance was increased gradually and then kept at 80°C. The maximum temperature reached in the dryer room was 50°C which was at the point just above the radiator. The effect of the mass flow rate on the room temperature was insignificant, while the effect on the pressure drop was significant. Moreover, the pressure drop decreased as the inlet temperature increased. In general, the radiator is recommended to be used as the heat source in a dryer room.


Author(s):  
Zahir Uddin Ahmed ◽  
Md. Roni Raihan ◽  
Omidreza Ghaffari ◽  
Muhammad Ikhlaq

Abstract Microchannel heat sink is an effective method in compact and faster heat transfer applications. This paper numerically investigates thermal and hydraulic characteristics of a porous microchannel heat sink (PMHS) using various nanofluids. The effect of porosity, inlet velocity and nanoparticle concentration on thermal-hydraulic performance is systematically examined. The result shows a significant temperature increase (40°C) of the coolant in the porous zone. The pressure drop reduces by 35% for γ = 0.32 compared to the non-porous counterpart, and this reduction of pressure significantly continues when γ further increases. The pressure drop with win is linear for PMHS with nanofluids, and the change in pressure drop is steeper for nanofluids compared to their base fluids. The average heat transfer coefficients increases about 2.5 times for PMHS, and a further increase of 6% in is predicted with the addition of nanoparticle. The average Nusselt number increases non-linearly with Re for PMHS. The friction factor reduces by 50% when γ increases from 0.32 to 0.60, and the effect of nanofluid on friction factor is insignificant beyond the mass flow rate of 0.0004 kg/s. Whilst Cu and CuO nanoparticles help to dissipate the larger amount of heat from the microchannel, Al2O3 nanoparticle appears to have a detrimental effect on heat transfer. The thermal-hydraulic performance factor strongly depends on the nanoparticles, and it slightly decreases with the mass flow rate. The increase of nanoparticle concentration, in general, enhances both h and ΔP linearly for the range considered.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shubham Sharma ◽  
Shalab Sharma ◽  
Mandeep Singh ◽  
Parampreet Singh ◽  
Rasmeet Singh ◽  
...  

In this numerical study, the heat transfer performance of shell-and-tube heat exchangers (STHXs) has been compared for two different tube arrangements. STHX having 21 and 24 tubes arranged in the inline and staggered grid has been considered for heat transfer analysis. Shell-and-tube heat exchanger with staggered grid arrangement has been observed to provide lesser thermal stratification as compared to the inline arrangement. Further, the study of variation in the mass flow rate of shell-side fluid having constant tube-side flow rate has been conducted for staggered grid structure STHX. The mass flow rate for the shell side has been varied from 0.1 kg/s to 0.5 kg/s, respectively, keeping the tube-side mass flow rate as constant at 0.25 kg/s. The influence of bulk mass-influx transfer rate on heat transfer efficiency, effectiveness, and pressure drop of shell-tube heat exchangers has been analyzed. CFD results were compared with analytical solutions, and it shows a good agreement between them. It has been observed that pressure drop is minimum for the flow rate of 0.1 kg/s, and outlet temperatures at the shell side and tube side have been predicted to be 40.94°C and 63.63°C, respectively.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Yuanyuan Zhou ◽  
Jianlin Yu

Falling film type condensers/reboilers applied to cryogenic air separation units (ASUs) have drawn more attentions in recent years. This paper presents and analyzes a mathematical model for the falling film plate-fin condensers/reboilers (FPCR). In the modeling, both the laminar falling film evaporation and condensation processes, incorporating with interference of mass transfer and interfacial shear stress, are considered, and related to a plate-fin heat exchanger (PHX). The liquid film flow and heat transfer characteristics of oxygen and nitrogen fluids in the PHX are analyzed under given conditions by solving the model with a numerical iteration method. The variations of liquid film thicknesses and local heat transfer coefficients of oxygen and nitrogen as well as the total local heat transfer coefficient have been obtained. Furthermore, the effects of the inlet mass flow rate allocation ratio (i.e., the ratio of inlet mass flow rate of oxygen liquid over the base plate to that over the fin surfaces) on the wetted length of the heat transfer surfaces, the heat transfer performance, and the oxygen liquid circulation ratio (i.e., the ratio of the inlet liquid mass flow rate to the generated vapor mass flow rate) are also discussed. A proper inlet mass flow rate allocation ratio of oxygen liquid is presented. The wave effects are further considered and analyzed through the inclusion of a model for the wave factor.


1989 ◽  
Vol 111 (2) ◽  
pp. 116-123 ◽  
Author(s):  
S. C. Lau ◽  
J. C. Han ◽  
T. Batten

Experiments have been conducted to study the turbulent heat transfer and friction characteristics in pin fin channels with small trailing edge ejection holes that are commonly found in modern internally cooled turbine airfoils. The main objective of the investigation is to examine the effects of varying the length and the configuration of the trailing edge ejection holes on the overall heat transfer, the overall pressure drop, the local pressure distribution, and the local mass flow rate distribution in the pin fin channel. The staggered pin fin array (L/D = 1.0, X/D = S/D = 2.5) in the test channel has 15 rows of three pins. The diameter of the ejection holes is one-half the diameter of the pins. There are 30 or 23 ejection holes on one of the side walls of the test channel and six similar ejection holes at the radial flow exit. Experimental results are obtained for two trailing edge ejection hole lengths, four ejection hole configurations, and Reynolds numbers between 10,000 and 60,000. The results show that the overall heat transfer increases when the length of the trailing edge ejection holes is increased and when the trailing edge ejection holes are configured so that much of the cooling air is forced to flow farther downstream in the radial flow direction before exiting the pin fin channel through ejection holes. The overall Nusselt number can be correlated with an equation of the form NuD = a (ReD)b, where the values of the exponent b are about the same for all the test cases with trailing edge flow ejection. Results also show that the increase in the overall heat transfer is generally accompanied by an increase in the overall pressure drop (that is, an increase in the required pumping power), except that the overall heat transfer is lower and the overall pressure drop is higher when there is no radial flow ejection. In the cases with both radial and trailing edge flow ejection, about 15 to 20 percent of the flow exits through the tip bleed holes.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1231 ◽  
Author(s):  
Alfaryjat ◽  
Miron ◽  
Pop ◽  
Apostol ◽  
Stefanescu ◽  
...  

A modern computer generates a great amount of heat while working. In order to secure appropriate working conditions by extracting the heat, a specific mechanism should be used. This research paper presents the effect of nanofluids on the microchannel heat sink performance of computer cooling systems experimentally. CeO2, Al2O3 and ZrO2 nanoparticles suspended in 20% ethylene glycol and 80% distilled water are used as working fluids in the experiment. The concentration of the nanoparticles ranges from 0.5% to 2%, mass flow rate ranges from 0.028 kg/s to 0.084 kg/s, and the ambient temperature ranges from 25 °C to 40 °C. Regarding the thermal component, parameters such as thermophysical properties of the nanofluids and base fluids, central processing unit (CPU) temperature, heat transfer coefficient, pressure drop, and pumping power have been experimentally investigated. The results show that CeO2-EG/DW, at a concentration of 2% and a mass flow rate of 0.084 kg/s, has with 8% a lower temperature than the other nanofluids and with 29% a higher heat transfer coefficient compared with the base fluid. The Al2O3-EG/DW shows the lowest pressure drop and pumping power, while the CeO2-EG/DW and ZrO2-EG/DW show the highest. However, a slight increase of pumping power and pressure drop can be accepted, considering the high improvement that the nanofluid brings in computer cooling performance compared to the base fluid.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2085 ◽  
Author(s):  
Zhongchao Zhao ◽  
Yimeng Zhou ◽  
Xiaolong Ma ◽  
Xudong Chen ◽  
Shilin Li ◽  
...  

The channels of a printed circuit heat exchanger (PCHE) can have different shapes, and the zigzag channel shape is one of the most widely used because of the relatively simple manufacturing process and low cost. However, the heat transfer enhancement of a zigzag channel is at the expense of increasing the pressure drop. In this paper, new channel shapes of a PCHE, i.e., a zigzag with an inserted straight channel and a zigzag channel with radian, were numerically investigated, with the aim of improving the heat transfer and reducing the pressure drop of supercritical LNG using the SST κ-ω model. The local and total pressure drop and heat transfer performance of supercritical LNG in a zigzag channel, zigzags with 1–5 mm inserted straight channels, and a zigzag channel with radian were analyzed by varying the mass flow rate from 1.83 × 10−4 to 5.49 × 10−4 kg/s. Performance evaluation criteria (PEC) were applied to compare the overall heat transfer performance of the zigzags with 1–5 mm inserted straight channels and a zigzag channel with radian to the zigzag channel of a PCHE. The maximum pressure drop for the zigzag channel was twice the minimum pressure drop for the zigzag channel with radian, while the convective heat transfer coefficient of the zigzag with a 4 mm inserted straight channel was higher, which was 1.2 times that of the zigzag channel with radian with the smallest convective heat transfer coefficient. The maximum value of the PEC with 1.099 occurred at a mass flow rate of 1.83 × 10−4 kg/s for the zigzag with a 4 mm inserted straight channel, while the minimum value of the PEC with 1.021 occurred at a mass flow rate of 5.49 × 10−4 kg/s for the zigzag with a 1 mm inserted straight channel. The zigzag with a 4 mm inserted straight channel had the best performance, as it had a higher PEC value at lower mass flow rates.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2969
Author(s):  
Shenglin Zhu ◽  
Jinfeng Wang ◽  
Jing Xie

The heat transfer and pressure drop characteristics of R290 flow boiling in a corrugated tube were investigated through computational fluid dynamics (CFD) in this study. We established a model of flow boiling in a corrugated tube with different corrugated structures (rectangular and circular corrugations) and validated the model using the Liu–Winterton and Xu–Fang empirical equations. The heat transfer coefficient (HTC) and pressure drop were obtained at a mass flow rate of 0.04–0.2 kg/s and a water inlet temperature of 310–330 K. The results show that the HTC and the drop in the pressure of the corrugated tubes both obviously increased compared with a smooth tube as the mass flow rate increased. The HTC decreased for the three tubes as the water inlet temperature increased, while the drop in pressure slightly increased for the three tubes. Moreover, the corrugated structure was found to significantly enhance the heat transfer; the heat transfer enhancement factor () of the corrugated tube with the rectangular corrugations and the corrugated tube with the circular corrugations was 2.01–2.36 and 1.67–1.98, respectively. The efficiency index () for both the rectangular corrugated pipe and the circular corrugated pipe was greater than 1 (1.05–1.24 and 1.13–1.29, respectively). The application of corrugated tubes with round and rectangular corrugations can reduce the heat transfer area required for the exchange of heat and, thus, reduce the cost.


Sign in / Sign up

Export Citation Format

Share Document