scholarly journals Tribo-Brake Characteristics between Brake Disc and Brake Shoe during Emergency Braking of Deep Coal Mine Hoist with the High Speed and Heavy Load

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5094
Author(s):  
Dagang Wang ◽  
Ruixin Wang ◽  
Tong Heng ◽  
Guozheng Xie ◽  
Dekun Zhang

The friction wear and thermal fatigue cracking of the brake shoe and friction-induced self-excited vibration (frictional flutter) of the disc brake can easily occur during emergency braking of a deep coal mine hoist with at high speed and with a heavy load. Therefore, tribo-brake characteristics between the brake disc and brake shoe during emergency braking of a deep coal mine hoist are investigated in the present study. Scaled parameters of the disc brake of a deep coal mine hoist are determined by employing the similarity principle. Friction tests between friction disc and brake shoe are carried out to obtain the coefficient of friction in the case of high speed and large specific pressure between the friction disc and brake shoe. Coupled thermo-mechanical finite element analyses of the brake disc and brake shoe are established to investigate temperature and stress fields of the brake disc and brake shoe during emergency braking, which is validated by the engineering failure case. Effects of braking parameters on flutter characteristics between the brake disc and brake shoe are explored by employing a double-degrees-of-freedom vibration mechanism model. The results show that the maximum temperature, equivalent Von Mises stress and contact pressure are all located at the average friction radii of contact surfaces of the brake disc and brake shoe during emergency braking. The cage crashing accident in the case of high speed and heavy load in a typical coal mine shows crack marks and discontinuous burn marks at central locations of brake shoe and brake disc surfaces, respectively, which indicates frictional flutter characteristics between brake disc and brake shoe. During emergency braking, flutter time duration decreases with increasing initial braking speed and damping parameter; the flutter amplitude and frequency of the disc brake increases with increasing normal braking load and stiffness, respectively.

2020 ◽  
Vol 12 (5) ◽  
pp. 168781402091809
Author(s):  
Dagang Wang ◽  
Ruixin Wang ◽  
Jun Zhang

Dynamic brake characteristics of disc brake during emergency braking of the kilometer deep coal mine hoist were investigated in the present study. The theoretical model of dynamic brake torque of disc brake during emergency braking was given to explore dynamic brake torque properties of disc brake. The three-dimensional thermo-mechanical coupled finite element model of brake disc–brake shoe was established to explore thermo-mechanical characteristics of disc brake during emergency braking. Effects of effective mass, hoisting acceleration and deceleration, and maximum hoisting speed on dynamic brake torques, equivalent von Mises stress, and temperature fields of disc brake during emergency braking were presented. The results show that the evolutions of brake torque, equivalent stress, and temperature of disc brake present fluctuating characteristics. The dynamic brake torque shows the largest change amplitude during emergency braking in the hoisting stage of constant speed. The largest equivalent stress and temperature are both located near the third brake shoe along the rotational direction at each side. An increase in effective mass causes overall decreases in the peak values of brake torque, equivalent stress, and temperature during emergency braking. Increases in hoisting acceleration/deceleration and maximum hoisting speed cause the increases in the maximum equivalent stress and temperature during emergency braking as compared to the slight decrease in the maximum brake torque.


2021 ◽  
Vol 11 (14) ◽  
pp. 6441
Author(s):  
Dagang Wang ◽  
Ruixin Wang ◽  
Bo Wang ◽  
Magd Abdel Wahab

The effects of vibration on the emergency braking tribological behaviors of the brake shoe of a deep coal mine hoist were investigated in this study. The thermal, frictional and mechanical parameters of the brake shoe were obtained. The vibration characteristics of the brake shoe during emergency braking were investigated, employing multibody dynamics analysis. The effect of vibration on the emergency braking tribological behaviors (temperature and stress distributions) of brake interfaces was explored using the finite element method. The self-made tribo-brake test rig of a brake shoe was employed to reveal the friction deterioration behaviors of the brake shoe during emergency braking. The results show obvious vibrations of all brake shoes along the direction of positive braking pressure during emergency braking. The vibration causes increases in the equivalent Von Mises stress and temperature at the contact interfaces between the brake disc and the brake shoe as compared to the case of ignoring the vibration. Along the rotation direction of the brake disc, the equivalent stress and temperature of the brake disc surface present three overall rapid increases, as well as two slight decreases during emergency braking. As compared to cyclic emergency braking, continuous emergency braking exhibits more obvious tribological degradation of the brake shoe, attributed to enhanced vibration. The wear loss of the brake shoe increases with increasing emergency braking cycles and continuous emergency braking time.


Wear ◽  
2020 ◽  
Vol 458-459 ◽  
pp. 203391
Author(s):  
Dagang Wang ◽  
Jikun Yin ◽  
Zhencai Zhu ◽  
Dekun Zhang ◽  
Dahua Liu ◽  
...  

2011 ◽  
Vol 199-200 ◽  
pp. 1492-1495 ◽  
Author(s):  
Guo Shun Wang ◽  
Rong Fu ◽  
Liang Zhao

The simulation calculation on the temperature field of the disc brake system on high-speed trains under the working condition of constant speed at 50Km/h is made. A steady-state calculation model is established according to the actual geometric size of a brake disc and a brake pad, and the analog calculation and simulation on the temperature field of the brake disc and the brake pad by using the large-scale nonlinear finite element software ABAQUS are carried out. The distribution rules of the temperature field of the brake disc and the brake pad under the working condition of constant speed are made known. The surface temperature of the brake disc at friction radius is the highest, with a band distribution for temperature. There exists a temperature flex point in the direction of thickness, of which the thickness occupies 15% of that of the brake disc; due to the small volume of the brake pad, the temperature gradient of the whole brake pad is not sharp, and larger temperature gradient occurs only on the contact surface.


2020 ◽  
Vol 10 (4) ◽  
pp. 1305
Author(s):  
Yongbo Guo ◽  
Dekun Zhang ◽  
Xinyue Zhang ◽  
Dagang Wang ◽  
Songquan Wang

A new transmission theory of “global dynamic wrap angle” for friction hoist is proposed. The theory is based on a mine hoist simulation model which combines the suspended rope with the wrapped rope. Rope dynamics in a suspended section are verified by the field experiment results. The theory holds that the mechanical state of wire rope is dynamic through the whole wrap angle, including deformation, contact and friction. When the rope enters the wrap angle, it provides positive friction and changes direction at a certain boundary point. The demarcation of the boundary depends on the rope load on both sides of the friction pulley. The theory is suitable for accurately analyzing the kinetics of high-speed and heavy-load friction hoisting.


Author(s):  
Zhizhuang Yu ◽  
Yong Wang

The function of the brake disc is to provide the ultimate guarantee of the safety of high speed trains. A braking unit includes two discs and two brake shoes. Braking performance depends on the pressure of the brake shoe and the friction between the disc and the shoe. When a train is braked, the brake disc endures a thermal load, which may affect the mechanical properties of the disc. If the thermal load exceeds the strength limit of the material, it could impact the safe running of the train. Therefore, the thermal load should be reduced as much as possible. Now the frictional surface of disc is plane and heat congregates easily in the surface area. The purpose of this paper is to explore a design for enhanced heat dissipation. A gas channel was used on the frictional surface to achieve the effect of heat dissipation. This design was analyzed by means of tribology and heat transfer theory. The distribution of gas flow was also researched. The temperature and stress field of the disc were simulated and analyzed. By the analysis it can be seen that the gas channel on the frictional surface of disc has a remarkable effect on heat dissipation in the brake disc.


2012 ◽  
Vol 443-444 ◽  
pp. 1045-1049 ◽  
Author(s):  
Zhi Jie Wang ◽  
San Ming Liu ◽  
Lin Lin Luan ◽  
Hua Qiao Xiao

The value of brake friction coefficient have to do with temperature rises、speed、press and the influence of temperature rise is most large.Because high speed mine hoist come into being high temperature in apply the brake,it affect friction coefficient and capability of apply the brake system. therefore,unfold study brake temperature rise and friction coefficient forecast is very importance meaning.Because ANN can reflect non-line relation of input and output,this paper puts forward description mapping relation and effect to apply the brake safety of with temperature rises、speed、press and the influence.


Author(s):  
Anil Babu Seelam ◽  
Nabil Ahmed Zakir Hussain ◽  
Sachidananda Hassan Krishanmurthy

Brakes are the most important component of any automobile. Brakes provide the ability to reduce or bring automobile to a complete stop. The process of braking is usually achieved by applying pressure to the brake discs. The main objective of this research paper is to propose an appropriate design and to perform analysis of a suitable brake rotor to enhance the performance of the high-speed car. The design of the brake disc is modelled using Solid works and the analysis is carried out using Ansys software. The analysis has been conducted by considering stainless steel and grey cast iron using same brake rotor design so that optimal choice of brake disc can be considered. The analysis considered involves static structural analysis and steady state thermal analysis considering specific parameters on brake rotor to increase the life of brake rotor. From the analysis it is found that the performance and life of disc brake depends upon heat dissipation. From the analysis results it can be concluded that grey cast iron has performed better as compared to stainless steel as this material has anti-fade properties which improves the life of the brake rotor.


2021 ◽  
Vol 13 (5) ◽  
pp. 2874
Author(s):  
Florin Dumitru Popescu ◽  
Sorin Mihai Radu ◽  
Andrei Andraș ◽  
Ildiko Brînaș

The sustainable exploitation of raw materials, with improved safety and increased productivity, is closely linked to the development of mechanical mining installations. Mine hoists are designed for the transport of material, equipment and personnel between the mine surface and the underground. The mine hoist braking system is of paramount importance in its safe operation. Thus, for both drum and disc brake systems, the temperature of the friction surfaces is important for ensuring efficient braking, as exceeding the temperature threshold causes a decrease in the braking capacity. In this paper we present a numerical calculation model for the temperature of the braking disc of a mine hoist in the case of emergency braking. A real-scale model was built, based on the cable drive wheel and disc brake system of a hoisting machine used in Romania. Real material characteristics were imposed for the brake discs, the cable drive wheel and the brake pads. The simulation was performed for decelerations of 3, 3.5, 4 and 4.5 m/s2. The analysis shows that regardless of the acceleration and time simulated, the disc temperature reaches its maximum after 1.35 s of emergency braking. This value does not exceed the 327 °C limit where, according to previous studies, the braking power starts to fade. It means that the emergency braking is safe for the acceleration and masses under consideration, in the case of the studied mine hoist.


2013 ◽  
Vol 37 (4) ◽  
pp. 1161-1175 ◽  
Author(s):  
Zhen C. Zhu ◽  
Wan Ma ◽  
Yu X. Peng ◽  
Guo A. Chen ◽  
Bin B. Liu

In this paper, the finite element (FE) model of the three-dimensional (3-D) transient thermo-stress field of a brake shoe was established and then the software ANSYS 13.0 was used to get the numerical solutions; an experiment was carried out on the X-DM friction tester to verify the FE model. It was found that both the whole temperature and the equivalent stresses of the brake shoe increased and then decreased during mine hoist emergency braking; region of 1 to 3 mm below the friction surface was suffered to larger temperature gradients and stresses.


Sign in / Sign up

Export Citation Format

Share Document