scholarly journals Energy Harvesting by Waste Acid/Base Neutralization via Bipolar Membrane Reverse Electrodialysis

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5510
Author(s):  
Andrea Zaffora ◽  
Andrea Culcasi ◽  
Luigi Gurreri ◽  
Alessandro Cosenza ◽  
Alessandro Tamburini ◽  
...  

Bipolar Membrane Reverse Electrodialysis (BMRED) can be used to produce electricity exploiting acid-base neutralization, thus representing a valuable route in reusing waste streams. The present work investigates the performance of a lab-scale BMRED module under several operating conditions. By feeding the stack with 1 M HCl and NaOH streams, a maximum power density of ~17 W m−2 was obtained at 100 A m−2 with a 10-triplet stack with a flow velocity of 1 cm s−1, while an energy density of ~10 kWh m−3 acid could be extracted by a complete neutralization. Parasitic currents along feed and drain manifolds significantly affected the performance of the stack when equipped with a higher number of triplets. The apparent permselectivity at 1 M acid and base decreased from 93% with the five-triplet stack to 54% with the 38-triplet stack, which exhibited lower values (~35% less) of power density. An important role may be played also by the presence of NaCl in the acidic and alkaline solutions. With a low number of triplets, the added salt had almost negligible effects. However, with a higher number of triplets it led to a reduction of 23.4–45.7% in power density. The risk of membrane delamination is another aspect that can limit the process performance. However, overall, the present results highlight the high potential of BMRED systems as a productive way of neutralizing waste solutions for energy harvesting.

2019 ◽  
Vol 53 (8) ◽  
pp. 4640-4647 ◽  
Author(s):  
Ying Mei ◽  
Lei Liu ◽  
Yi-Chun Lu ◽  
Chuyang Y. Tang

Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 99 ◽  
Author(s):  
Jiabing Xia ◽  
Gerhart Eigenberger ◽  
Heinrich Strathmann ◽  
Ulrich Nieken

Neutralization of acid and base to produce electricity in the process of reverse electrodialysis with bipolar membranes (REDBP) presents an interesting but until now fairly overlooked flow battery concept. Previously, we presented single-cell experiments, which explain the principle and discuss the potential of this process. In this contribution, we discuss experiments with REDBP stacks at lab scale, consisting of 5 to 20 repeating cell units. They demonstrate that the single-cell results can be extrapolated to respective stacks, although additional losses have to be considered. As in other flow battery stacks, losses by shunt currents through the parallel electrolyte feed/exit lines increases with the number of connected cell units, whereas the relative importance of electrode losses decreases with increasing cell number. Experimental results are presented with 1 mole L−1 acid (HCl) and base (NaOH) for open circuit as well as for charge and discharge with up to 18 mA/cm2 current density. Measures to further increase the efficiency of this novel flow battery concept are discussed.


2021 ◽  
Vol 9 (12) ◽  
pp. 7955-7966
Author(s):  
Jae-Hun Kim ◽  
In Seop Chang ◽  
Seung-Hyeon Moon

An acid–base junction flow battery (ABJFB) is a new type of energy conversion system using neutralization and water dissociation in the presence of acid and base electrolytes.


Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 168-178
Author(s):  
Marzia Quaglio ◽  
Daniyal Ahmed ◽  
Giulia Massaglia ◽  
Adriano Sacco ◽  
Valentina Margaria ◽  
...  

Sediment microbial fuel cells (SMFCs) are energy harvesting devices where the anode is buried inside marine sediment, while the cathode stays in an aerobic environment on the surface of the water. To apply this SCMFC as a power source, it is crucial to have an efficient power management system, leading to development of an effective energy harvesting technique suitable for such biological devices. In this work, we demonstrate an effective method to improve power extraction with SMFCs based on anodes alternation. We have altered the setup of a traditional SMFC to include two anodes working with the same cathode. This setup is compared with a traditional setup (control) and a setup that undergoes intermittent energy harvesting, establishing the improvement of energy collection using the anodes alternation technique. Control SMFC produced an average power density of 6.3 mW/m2 and SMFC operating intermittently produced 8.1 mW/m2. On the other hand, SMFC operating using the anodes alternation technique produced an average power density of 23.5 mW/m2. These results indicate the utility of the proposed anodes alternation method over both the control and intermittent energy harvesting techniques. The Anode Alternation can also be viewed as an advancement of the intermittent energy harvesting method.


2021 ◽  
Vol 27 (1) ◽  
pp. 17-23
Author(s):  
Guniganti Balakishan ◽  
Gullapalli Kumaraswamy ◽  
Vykunthapu Narayanarao ◽  
Pagilla Shankaraiah

Abstract A Cu(II)-catalyzed Csp2-Se and Csp2-Sulfur bond formation was achieved with moderate to good yields without the aid of Lewis acid and base. The reaction is compatible with a wide range of heterocycles such as benzothiazole, thiazole, and imidazole. Also, this typical protocol is found to be active in thio-selenation via S-H activation. Additionally, we proposed a plausible mechanistic pathway involving Cu(III) putative intermediate.


2016 ◽  
Vol 18 (41) ◽  
pp. 28626-28647 ◽  
Author(s):  
Innocent S. Ike ◽  
Iakovos Sigalas ◽  
Sunny E. Iyuke

The influence of different charging current densities, charging times and several structural designs on symmetric electrochemical capacitor (EC) performance, including capacitance, energy density and power density, has been investigated via modelling and simulation.


2014 ◽  
Vol 4 (4) ◽  
pp. 971-978 ◽  
Author(s):  
Mahiro Shirotori ◽  
Shun Nishimura ◽  
Kohki Ebitani

One-pot synthesis of (2-furanylmethylene)malononitrile, a Knoevenagel product of furfural with malononitrile, from xylose efficiently proceeded by combined use of acid Amberlyst-15 and acid-base Cr/hydrotalcites in 44% yield.


Sign in / Sign up

Export Citation Format

Share Document