scholarly journals Acid-Base Flow Battery, Based on Reverse Electrodialysis with Bi-Polar Membranes: Stack Experiments

Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 99 ◽  
Author(s):  
Jiabing Xia ◽  
Gerhart Eigenberger ◽  
Heinrich Strathmann ◽  
Ulrich Nieken

Neutralization of acid and base to produce electricity in the process of reverse electrodialysis with bipolar membranes (REDBP) presents an interesting but until now fairly overlooked flow battery concept. Previously, we presented single-cell experiments, which explain the principle and discuss the potential of this process. In this contribution, we discuss experiments with REDBP stacks at lab scale, consisting of 5 to 20 repeating cell units. They demonstrate that the single-cell results can be extrapolated to respective stacks, although additional losses have to be considered. As in other flow battery stacks, losses by shunt currents through the parallel electrolyte feed/exit lines increases with the number of connected cell units, whereas the relative importance of electrode losses decreases with increasing cell number. Experimental results are presented with 1 mole L−1 acid (HCl) and base (NaOH) for open circuit as well as for charge and discharge with up to 18 mA/cm2 current density. Measures to further increase the efficiency of this novel flow battery concept are discussed.

2018 ◽  
Vol 565 ◽  
pp. 157-168 ◽  
Author(s):  
Jiabing Xia ◽  
Gerhart Eigenberger ◽  
Heinrich Strathmann ◽  
Ulrich Nieken

2021 ◽  
Vol 640 ◽  
pp. 119748 ◽  
Author(s):  
Emad Al-Dhubhani ◽  
Ragne Pärnamäe ◽  
Jan W. Post ◽  
Michel Saakes ◽  
Michele Tedesco

Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 409
Author(s):  
Ragne Pärnamäe ◽  
Luigi Gurreri ◽  
Jan Post ◽  
Willem Johannes van Egmond ◽  
Andrea Culcasi ◽  
...  

The increasing share of renewables in electric grids nowadays causes a growing daily and seasonal mismatch between electricity generation and demand. In this regard, novel energy storage systems need to be developed, to allow large-scale storage of the excess electricity during low-demand time, and its distribution during peak demand time. Acid–base flow battery (ABFB) is a novel and environmentally friendly technology based on the reversible water dissociation by bipolar membranes, and it stores electricity in the form of chemical energy in acid and base solutions. The technology has already been demonstrated at the laboratory scale, and the experimental testing of the first 1 kW pilot plant is currently ongoing. This work aims to describe the current development and the perspectives of the ABFB technology. In particular, we discuss the main technical challenges related to the development of battery components (membranes, electrolyte solutions, and stack design), as well as simulated scenarios, to demonstrate the technology at the kW–MW scale. Finally, we present an economic analysis for a first 100 kW commercial unit and suggest future directions for further technology scale-up and commercial deployment.


2021 ◽  
pp. 129529
Author(s):  
Maryori C. Díaz-Ramírez ◽  
Maria Blecua-de-Pedro ◽  
Alvaro J. Arnal ◽  
Jan Post

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5510
Author(s):  
Andrea Zaffora ◽  
Andrea Culcasi ◽  
Luigi Gurreri ◽  
Alessandro Cosenza ◽  
Alessandro Tamburini ◽  
...  

Bipolar Membrane Reverse Electrodialysis (BMRED) can be used to produce electricity exploiting acid-base neutralization, thus representing a valuable route in reusing waste streams. The present work investigates the performance of a lab-scale BMRED module under several operating conditions. By feeding the stack with 1 M HCl and NaOH streams, a maximum power density of ~17 W m−2 was obtained at 100 A m−2 with a 10-triplet stack with a flow velocity of 1 cm s−1, while an energy density of ~10 kWh m−3 acid could be extracted by a complete neutralization. Parasitic currents along feed and drain manifolds significantly affected the performance of the stack when equipped with a higher number of triplets. The apparent permselectivity at 1 M acid and base decreased from 93% with the five-triplet stack to 54% with the 38-triplet stack, which exhibited lower values (~35% less) of power density. An important role may be played also by the presence of NaCl in the acidic and alkaline solutions. With a low number of triplets, the added salt had almost negligible effects. However, with a higher number of triplets it led to a reduction of 23.4–45.7% in power density. The risk of membrane delamination is another aspect that can limit the process performance. However, overall, the present results highlight the high potential of BMRED systems as a productive way of neutralizing waste solutions for energy harvesting.


2021 ◽  
Vol 11 (17) ◽  
pp. 8100
Author(s):  
Marta Herrero-Gonzalez ◽  
Raquel Ibañez

Electro-membrane technologies are versatile processes that could contribute towards more sustainable seawater reverse osmosis (SWRO) desalination in both freshwater production and brine management, facilitating the recovery of materials and energy and driving the introduction of the circular economy paradigm in the desalination industry. Besides the potential possibilities, the implementation of electro-membrane technologies remains a challenge. The aim of this work is to present and evaluate different alternatives for harvesting renewable energy and the recovery of chemicals on an SWRO facility by means of electro-membrane technology. Acid and base self-supply by means of electrodialysis with bipolar membranes is considered, together with salinity gradient energy harvesting by means of reverse electrodialysis and pH gradient energy by means of reverse electrodialysis with bipolar membranes. The potential benefits of the proposed alternatives rely on environmental impact reduction is three-fold: (a) water bodies protection, as direct brine discharge is avoided, (b) improvements in the climate change indicator, as the recovery of renewable energy reduces the indirect emissions related to energy production, and (c) reduction of raw material consumption, as the main chemicals used in the facility are produced in-situ. Moreover, further development towards an increase in their technology readiness level (TRL) and cost reduction are the main challenges to face.


2022 ◽  
Vol 641 ◽  
pp. 119899
Author(s):  
Arturo Ortega ◽  
Luis F. Arenas ◽  
Joep J.H. Pijpers ◽  
Diana L. Vicencio ◽  
Juan C. Martínez ◽  
...  

2020 ◽  
Vol 277 ◽  
pp. 115576 ◽  
Author(s):  
Andrea Culcasi ◽  
Luigi Gurreri ◽  
Andrea Zaffora ◽  
Alessandro Cosenza ◽  
Alessandro Tamburini ◽  
...  

2017 ◽  
Vol 42 (4) ◽  
pp. 1524-1535 ◽  
Author(s):  
W. J. van Egmond ◽  
M. Saakes ◽  
I. Noor ◽  
S. Porada ◽  
C. J. N. Buisman ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 6089
Author(s):  
Jesús Muñoz-Cruzado-Alba ◽  
Rossano Musca ◽  
Javier Ballestín-Fuertes ◽  
José F. Sanz-Osorio ◽  
David Miguel Rivas-Ascaso ◽  
...  

There are many different types of energy storage systems (ESS) available and the functionality that they can provide is extensive. However, each of these solutions come with their own set of drawbacks. The acid-base flow battery (ABFB) technology aims to provide a route to a cheap, clean and safe ESS by means of providing a new kind of energy storage technology based on reversible dissociation of water via bipolar electrodialysis. First, the main characteristics of the ABFB technology are described briefly to highlight its main advantages and drawbacks and define the most-competitive use-case scenarios in which the technology could be applied, as well as analyze the particular characteristics which must be considered in the process of designing the power converter to be used for the interface with the electrical network. As a result, based on the use-cases defined, the ESS main specifications are going to be identified, pointing out the best power converter configuration alternatives. Finally, an application example is presented, showing an installation in the electrical network of Pantelleria (Italy) where a real pilot-scale prototype has been installed.


Sign in / Sign up

Export Citation Format

Share Document