scholarly journals Effects of Cyber Attacks on AC and High-Voltage DC Interconnected Power Systems with Emulated Inertia

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5583
Author(s):  
Kaikai Pan ◽  
Jingwei Dong ◽  
Elyas Rakhshani ◽  
Peter Palensky

The high penetration of renewable energy resources and power electronic-based components has led to a low-inertia power grid which would bring challenges to system operations. The new model of load frequency control (LFC) must be able to handle the modern scenario where controlled areas are interconnected by parallel AC/HVDC links and storage devices are added to provide virtual inertia. Notably, vulnerabilities within the communication channels for wide-area data exchange in LFC loops may make them exposed to various cyber attacks, while it still remains largely unexplored how the new LFC in the AC/HVDC interconnected system with emulated inertia would be affected under malicious intrusions. Thus, in this article, we are motivated to explore possible effects of the major types of data availability and integrity attacks—Denial of Service (DoS) and false data injection (FDI) attacks—on such a new LFC system. By using a system-theoretic approach, we explore the optimal strategies that attackers can exploit to launch DoS or FDI attacks to corrupt the system stability. Besides, a comparison study is performed to learn the impact of these two types of attacks on LFC models of power systems with or without HVDC link and emulated inertia. The simulation results on the the exemplary two-area system illustrate that both DoS and FDI attacks can cause large frequency deviations or even make the system unstable; moreover, the LFC system with AC/HVDC interconnections and emulated inertia could be more vulnerable to these two types of attacks in many adversarial scenarios.

Author(s):  
M. Beccuti ◽  
S. Chiaradonna ◽  
F. Di Giandomenico ◽  
S. Donatelli ◽  
G. Dondossola ◽  
...  

This chapter is devoted to the study of the consequences of cyber-attacks to the telecommunication service of the electrical grid, which is an essential service for the grid control system. It is up to the control system to ensure that even very large power systems are kept in equilibrium even in presence of power contingencies. This chapter considers cyber-attacks of the Denial of Service (DoS) type, occurring while the electrical grid is already facing an electrical failure that requires a load shedding strategy. Using a model-based approach that uses the rich and flexible formalism provided by the tool Möbius, it is possible to investigate the interplay between an attack to the telecommunication service and the state of the grid in a number of different situations and for different characterizations of the DoS behaviour and severity. The formalism used allows to associate a (stochastic) duration and/or a probability to the events happening in the system, so as to take into account the variability in attacks’ behaviour, leading to a quantitative characterization of the impact of a DoS attack to the electrical grid.


2014 ◽  
pp. 1617-1638
Author(s):  
M. Beccuti ◽  
S. Chiaradonna ◽  
F. Di Giandomenico ◽  
S. Donatelli ◽  
Giovanna Dondossola ◽  
...  

This chapter is devoted to the study of the consequences of cyber-attacks to the telecommunication service of the electrical grid, which is an essential service for the grid control system. It is up to the control system to ensure that even very large power systems are kept in equilibrium even in presence of power contingencies. This chapter considers cyber-attacks of the Denial of Service (DoS) type, occurring while the electrical grid is already facing an electrical failure that requires a load shedding strategy. Using a model-based approach that uses the rich and flexible formalism provided by the tool Möbius, it is possible to investigate the interplay between an attack to the telecommunication service and the state of the grid in a number of different situations and for different characterizations of the DoS behaviour and severity. The formalism used allows to associate a (stochastic) duration and/or a probability to the events happening in the system, so as to take into account the variability in attacks' behaviour, leading to a quantitative characterization of the impact of a DoS attack to the electrical grid.


2018 ◽  
Vol 8 (2) ◽  
pp. 2633-2639 ◽  
Author(s):  
K. Soleimani ◽  
J. Mazloum

Power systems include multiple units linked together to produce constantly moving electric power flux. Stability is very important in power systems, so controller systems should be implemented in power plants to ensure power system stability either in normal conditions or after the events of unwanted inputs and disorder. Frequency and active power control are more important regarding stability. Our effort focused on designing and implementing robust PID and PI controllers based on genetic algorithm by changing the reference of generating units for faster damping of frequency oscillations. Implementation results are examined on two-area power system in the ideally state and in the case of parameter deviation. According to the results, the proposed controllers are resistant to deviation of power system parameters and governor uncertainties.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Alexandros I. Nikolaidis ◽  
Francisco M. Gonzalez-Longatt ◽  
C. A. Charalambous

The continuous increase on the penetration levels of Renewable Energy Sources (RESs) in power systems has led to radical changes on the design, operation, and control of the electrical network. This paper investigates the influence of these changes on the operation of a transmission network by developing a set of indices, spanning from power losses to GHG emissions reduction. These indices are attempting to quantify any impacts therefore providing a tool for assessing the RES penetration in transmission networks, mainly for isolated systems. These individual indices are assigned an analogous weight and are mingled to provide a single multiobjective index that performs a final evaluation. These indices are used to evaluate the impact of the integration of RES into the classic WSCC 3-machine, 9-bus transmission network.


Author(s):  
Eoghan McKenna ◽  
John Barton ◽  
Murray Thomson

This article studies the impact on CO2 emissions of electrical storage systems in power systems with high penetrations of wind generation. Using the Irish All-Island power system as a case-study, data on the observed dispatch of each large generator for the years 2008 to 2012 was used to estimate a marginal emissions factor of 0.547 kgCO2/kWh. Selected storage operation scenarios were used to estimate storage emissions factors – the carbon emissions impact associated with each unit of storage energy used. The results show that carbon emissions increase in the short-run for all storage technologies when consistently operated in ‘peak shaving and trough filling’ modes, and indicate that this should also be true for the GB and US power systems. Carbon emissions increase when storage is operated in ‘wind balancing’ mode, but reduce when storage is operated to reduce wind power curtailment, as in this case wind power operates on the margin. For power systems where wind is curtailed to maintain system stability, the results show that energy storage technologies that provide synthetic inertia achieve considerably greater carbon reductions. The results highlight a tension for policy makers and investors in storage, as scenarios based on the operation of storage for economic gains increase emissions, while those that decrease emissions are unlikely to be economically favourable. While some scenarios indicate storage increases emissions in the short-run, these should be considered alongside long-run assessments, which indicate that energy storage is essential to the secure operation of a fossil fuel-free grid.


2021 ◽  
Vol 15 ◽  
pp. 102-106
Author(s):  
Samir Bellarbi

Generally speaking, asynchronous generators are used more frequently in medium power in wind energy conversion systems WECS applications. Depending on the power electronics converter used in the specific application, the operation of the asynchronous machine can be controlled in nested speed torque loops, using different torque control algorithms. Because WECS are highly nonlinear systems, but with smooth nonlinearities, a possible optimal control design solution can be the maximum power point tracking MPPT in this paper. This research describes a comparison of the power quality for wind power systems based on two generators: the squirrel-cage induction generator (SCIG), the doubly fed induction generator (DFIG). At first, we simulated SCIG and DFIG in MATLAB/Simulink and investigates the impact of this generators on the power system stability for compare the results and to comment on the best option based on the output characteristics of the generator and wind turbine. The technical objective of this research is to choose the most suitable generator adaptive with changing wind speeds and the most energy production


2020 ◽  
Vol 12 (21) ◽  
pp. 9179
Author(s):  
Sidi Boubacar ElMamy ◽  
Hichem Mrabet ◽  
Hassen Gharbi ◽  
Abderrazak Jemai ◽  
Damien Trentesaux

A systematic review of the literature is presented related to the usage of blockchain technology (BCT) for cyber-threats in the context of Industry 4.0. BCT plays a crucial role in creating smart factories and it is recognized as a core technology that triggers a disruptive revolution in Industry 4.0. Beyond security, authentication, asset tracking and the exchange of smart contracts, BCTs allow terminals to exchange information according to mutually agreed rules within a secured manner. Consequently, BCT can play a crucial role in industrial sustainability by preserving the assets and the environment and by enhancing the quality of life of citizens. In this work, a classification of the most important cyber-attacks that occurred in the last decade in Industry 4.0 is proposed based on four classes. The latter classes cover scanning, local to remote, power of root and denial of service (DoS). BCT is also defined and various types belong to BCT are introduced and highlighted. Likewise, BCT protocols and implementations are discussed as well. BCT implementation includes linear structure and directed acyclic graph (DAG) technology. Then, a comparative study of the most relevant works based on BCT in Industry 4.0 is conducted in terms of confidentiality, integrity, availability, privacy and multifactor authentication features. Our review shows that the integration of BCT in industry can ensure data confidentiality and integrity and should be enforced to preserve data availability and privacy. Future research directions towards enforcing BCT in the industrial field by considering machine learning, 5G/6G mobile systems and new emergent technologies are presented.


Author(s):  
Adel A. Abou El Ela ◽  
Ragab A. El-Sehiemy ◽  
Abdullah M. Shaheen ◽  
Abd El Galil Diab

Modern multi-area power systems are in persistent facing to imbalances in power generation and consumption which directly causes frequency and tie-line power fluctuations in each area. This paper deals with the load frequency control (LFC) problem where the control objective of regulating their error signals despite the presences of several external load disturbances. It proposes an optimal design of proportional integral derivative controller (PID) based on a novel version of Jaya algorithm called self-adaptive multi-population elitist (SAMPE) Jaya optimizer. A filter with derivative term is integrated with PID controller to alleviate the impact of noise in the input signal. A time domain based-objective functions are investigated such as integral time-multiplied absolute value of the error (ITAE) and integral of absolute error (IAE). Both SAMPE-Jaya and Jaya optimizers are employed to optimally tune the PID parameters for interconnected power systems comprising two non-reheat thermal areas. Three test cases are performed with various load disturbances in both areas individually and simultaneaously. Also, the practical physical constraints related to generation rate constraint (GRC) with its nonlinearity characteristics are taken into account. In addition, the obtained results using the designed PID controller based on SAMPE-Jaya are compared with various reported techniques. These simulated comparisons declare the great efficiency and the high superiority of the designed PID controller based on SAMPE-Jaya.


2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Ark Dev ◽  
David Fernando Novella Rodríguez ◽  
Sumant Anand ◽  
Mrinal Kanti Sarkar

Abstract The letter proposes frequency stability in power systems with input delay. A closed loop system can be oscillatory or even unstable without the exact knowledge of delay. Therefore, it is desirable to design a control scheme which is based on the estimation of unknown delay. The proposed design consists of an infinite dimensional observer with an adaptive time delay estimation and a sliding mode controller (SMC). The merit of the proposed concept lies in the fact that the unknown delay is valued by just estimating the smallest delay segment. The controller input is obtained from a set of sequential observers that predicts the system states and ensures asymptotic stability of the closed loop system with input delay estimation. The existence of sliding mode and the closed loop system stability is proved thanks to the Lyapunov and Lyapunov–Krasovskii candidate functionals, respectively. Simulation results confirm the effectiveness of the proposed design.


Sign in / Sign up

Export Citation Format

Share Document