Multi Observer-Based Sliding Mode Load Frequency Control With Input Delay Estimation

2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Ark Dev ◽  
David Fernando Novella Rodríguez ◽  
Sumant Anand ◽  
Mrinal Kanti Sarkar

Abstract The letter proposes frequency stability in power systems with input delay. A closed loop system can be oscillatory or even unstable without the exact knowledge of delay. Therefore, it is desirable to design a control scheme which is based on the estimation of unknown delay. The proposed design consists of an infinite dimensional observer with an adaptive time delay estimation and a sliding mode controller (SMC). The merit of the proposed concept lies in the fact that the unknown delay is valued by just estimating the smallest delay segment. The controller input is obtained from a set of sequential observers that predicts the system states and ensures asymptotic stability of the closed loop system with input delay estimation. The existence of sliding mode and the closed loop system stability is proved thanks to the Lyapunov and Lyapunov–Krasovskii candidate functionals, respectively. Simulation results confirm the effectiveness of the proposed design.

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3223 ◽  
Author(s):  
Liu ◽  
Zhang ◽  
Zou

This paper presents an active disturbance rejection control (ADRC) technique for load frequency control of a wind integrated power system when communication delays are considered. To improve the stability of frequency control, equivalent input disturbances (EID) compensation is used to eliminate the influence of the load variation. In wind integrated power systems, two area controllers are designed to guarantee the stability of the overall closed-loop system. First, a simplified frequency response model of the wind integrated time-delay power system was established. Then the state-space model of the closed-loop system was built by employing state observers. The system stability conditions and controller parameters can be solved by some linear matrix inequalities (LMIs) forms. Finally, the case studies were tested using MATLAB/SIMULINK software and the simulation results show its robustness and effectiveness to maintain power-system stability.


2020 ◽  
Vol 10 (18) ◽  
pp. 6219
Author(s):  
Zhongyi Guo ◽  
Haifeng Ma ◽  
Qinghua Song

The control design for many industrial applications requires compensation for parameter uncertainty and external disturbance. Reported in many previous works, the parameter uncertainty and external disturbance are combined as a lumped disturbance, which is assumed to be smooth and bounded. However, for a discrete-time sliding mode control (DSMC) system, the above assumption may not hold. Here, the parameter uncertainty, along with its compensation in the DSMC system, are reconsidered and reevaluated. The influence of parameter uncertainty on the closed-loop system stability is first addressed. Then, the comparative investigation of the performance of six state-of-the-art disturbance compensators for parameter uncertainty compensation is conducted. Simulation results show that none of these compensators can effectively observe and compensate for the parameter uncertainty.


2018 ◽  
Vol 41 (5) ◽  
pp. 1266-1277 ◽  
Author(s):  
Kun Yan ◽  
Mou Chen ◽  
Qiangxian Wu ◽  
Ke Lu

In this paper, an adaptive robust fault-tolerant control scheme is developed for attitude tracking control of a medium-scale unmanned autonomous helicopter with rotor flapping dynamics, external unknown disturbances and actuator faults. For the convenience of control design, the actuator dynamics with respect to the tail rotor are introduced. The adaptive fault observer and robust item are employed to observe the actuator faults and eliminate the effect of external disturbances, respectively. A backstepping-based robust fault-tolerant control scheme is designed with the aim of obtaining satisfactory tracking performance and closed-loop system stability is proved via Lyapunov analysis, which guarantees the convergence of all closed-loop system signals. Simulation results are given to show the effectiveness of the proposed control method.


2021 ◽  
Vol 2 ◽  
Author(s):  
Saeed Salavati ◽  
Karolos Grigoriadis ◽  
Matthew Franchek

This paper examines the control design for parameter-dependent input-delay linear parameter-varying (LPV) systems with saturation constraints and matched input disturbances. A gain-scheduled dynamic output feedback controller, coupled with a disturbance observer to cancel out input disturbance effects, was augmented with an anti-windup compensator to locally stabilize the input-delay LPV system under saturation, model uncertainty, and exogenous disturbances. Sufficient delay-dependent conditions to asymptotically stabilize the closed-loop system were derived using Lyapunov-Krasovskii functionals and a modified generalized sector condition to address the input saturation nonlinearity. The level of disturbance rejection was characterized via the closed-loop induced L2-norm of the closed-loop system in the form of linear matrix inequality (LMI) constraints. The results are examined in the context of the mean arterial pressure (MAP) control in the clinical resuscitation of critical hypotensive patients. The MAP variation response to the injection of vasopressor drugs was modeled as an LPV system with a varying input delay and was susceptible to model uncertainty and input/output disturbances. A Bayesian filtering method known as the cubature Kalman filter (CKF) was used to estimate the instantaneous values of the parameters. The varying delay was estimated via a multiple-model approach. The proposed input-delay LPV control was validated in closed-loop simulations to demonstrate its merits and capabilities in the presence of drug administration constraints.


In this paper, the power from a solar PV panel 20VDC, 12.5ADC is used for charging an electric vehicle battery (12V, 7Ah) with the help of an isolated dc-dc converter in an efficient manner. The power rating maintained in the system is around (200-250) W. The parasitic circuit analysis is carried out theoretically. The zero voltage transition (ZVT) technique is implemented at the inverter stage and an isolation transformer (1:1) is used for source-load isolation purposes. In order to achieve ZVT, a proper design procedure is followed and a pulse triggering technique is carried out at the switching element. The designed values of the parasitic elements are used in the Simulink tool. The open loop and closed loop system of the proposed converter are simulated in MATLAB Simulink package. In the open loop system, an irradiation analysis carried out similarly closed loop has reference voltage variation analysis in order to verify the system stability at the various operating condition. The problem of transients in open loop output is rectified in the closed loop operation. The MPP and PI control technique is initiated in the closed loop system for better performance. The MPP technique used is incremental conductance method for tracking maximum power from the PV array.


Author(s):  
Syed Mujtaba Mahdi Mudassir ◽  
Faheem Ahmed Khan ◽  
Shaziya Sultana

A control system is a set of mechanical or electronic devices that regulates other devices or systems by way of control loops. Typically, control systems are computerized. The mode of operation in a Control System where controlling variables is a function of the system and the structure is changed knowingly according to set of rules, which are already declared: for example a sensor based  system, is called as sliding control mode where the feedback control system response is limited and revolves around surface in the space to a point of equilibrium. In this mode of schemes, a switching variable dictates which form of control is to be used at a given instant, depending on the position of the state from the surface. First a set of points for which the switching function is null is used called as sliding surface. Sliding Mode Control (SMC) is a very robust technique which can handle sudden and large changes in dynamics of the system which can be applied to many areas like controlling of motor, aircraft and spacecraft, process control and power systems. SMC is one of the best tool in the industry to design controllers for the systems which has variable values, and provides robust properties against matched uncertainties, However,this use of SMC can only be achieved after the occurrence of the sliding mode. Before the occurrence of the switching function as null i.e. during the reaching phase, the system is affected by even matched ones. Several first order SMC applications for linear and nonlinear systems can be found in the literature [1]. Hence to eliminate the reaching phase and to make sure the ruggedness of the system throughout the entire closed-loop system response Integral Sliding Modes are used. In this paper a design procedure for sliding mode controllers for better control of voltage is applied, and then the ideas implemented are extended to all integral sliding modes in order to ensure optimum operation of entire system response[2]. Necessary conditions for the existence of sliding modes are also given. The closed-loop system is also proved to be exponentially stable. Simulation and experimental tests using the prototype of controlled DC-DC  CUK converter were performed to validate the proposed control approach.


2020 ◽  
pp. 107754632094912
Author(s):  
Da Li ◽  
Hui Yang ◽  
Na Qi ◽  
Jiaxin Yuan

An observer-based sliding mode control scheme is proposed for suppressing bending-torsion coupling flutter motions of a wing aeroelastic system with delayed output by using the piezoelectric patch actuators. The wing structure is modeled as a thin-walled beam, and the aerodynamics on the wing are computed by the strip theory. For the implementation of the control algorithm, the piezoelectric patch is bonded on the top surface of the beam to act as the actuator. Ignoring the effect of piezoelectric actuators on structural dynamics, only considering the bending moments induced by piezoelectric effects, the corresponding dynamic motion equation is established by using the Lagrange method with the assumed mode method. The flutter speed and frequency of the closed-loop system with time delay are obtained by solving a polynomial eigenvalue problem. An observer-based controller that does not dependent on time delay is developed for suppressing the flutter, and the corresponding gain matrices are obtained by solving linear matrix inequalities. The sufficient condition for the asymptotic stability of the closed-loop system is derived in terms of linear matrix inequalities. The simulation results demonstrate that the proposed control strategy based on the piezoelectric actuator is effective in wing bending-torsion coupling flutter system with a delayed output.


Sign in / Sign up

Export Citation Format

Share Document