scholarly journals A Portable System for the Evaluation of the Degree of Pollution of Transmission Line Insulators

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6625
Author(s):  
Lucas de Paula Santos Petri ◽  
Emanuel Antonio Moutinho ◽  
Rondinele Pinheiro Silva ◽  
Renato Massoni Capelini ◽  
Rogério Salustiano ◽  
...  

Surface pollution is a major cause of partial discharges in high voltage insulators in coastal cities, leading to degradation of their surface and accelerating their aging process, which may cause visible arcing, flashovers and system faults. Thus, this work provides a methodology for the assessment of the condition of insulators based on an instrument which generates a severity degree to help the electric utility team schedule maintenance routines for the structures that really need it. The instrument uses a Raspberry Pi board as the processing core, a PicoScope oscilloscope for the data acquisition and an antenna as a partial discharge sensor. The algorithms are implemented in Python, and use artificial intelligence tools, such as a convolutional network and a fuzzy inference system. Laboratory test methods for the simulation of the field pollution conditions were successfully used for the validation of the instrument, which showed a good correlation between the pollution level and the severity degree generated. In addition to that, field collected data were also used for the evaluation of the proposed severity degree, which is demonstrated to be consistent when compared with the utility’s reports and the history of the selected areas from where data were collected.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Prateek Pandey ◽  
Ratnesh Litoriya

PurposeThe purpose for writing this article is derived from the misery and chaos prevalent in the world due to the coronavirus pandemic – since late 2019 and still continuing as of December 2020.Design/methodology/approachA blockchain-based solution to verify the country visit trail and disease and treatment history of the passengers who arrive at the immigration counters located at various national borders and entry points is proposed. A fuzzy inference based suspect identifier system is also presented in this article that could be utilized to make further decisions based on the degree of suspicion observed on a particular passenger.FindingsThis paper attempted to put forth a blockchain-based system which consumes the healthcare and visit trail summary of a passenger (appearing for an interview before an immigration officer) and forwards it to a fuzzy inference system to reach to a conclusion that the passenger should be advised to self-quarantine, detained, or should be allowed to enter. Such a system would help to make correct decisions at the immigration counters to check pandemic diseases, like COVID-19, right at the entry points.Research limitations/implicationsThe implications of this work are manifold. First, the proposed framework works independent of the type of pandemic and is a readymade tool to check the spread of disease through infected human carriers. Second, the proposed framework will keep the mortality rates under check, which would give ample time for the authorities to save the lives of the people with co-morbidities and age vulnerabilities (Vichitvanichphong et al., 2018). Third, it is a general phenomenon to restrict the flights from the country where the first few cases of infection are discovered; however, the infected person, at the same time, might travel through alternative routes. The blockchain-enabled proposed framework ensures the detection of such cases at no other cost. Finally, the solution may appear costly in the first place, but it has the potential to hold back the revenue of the countries that would otherwise be spent on reactive measures.Originality/valueAs of now no other study or research article provides the solution to the biggest problem persists in the world in this way. The contribution is original and worth applying.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4093
Author(s):  
Alimed Celecia ◽  
Karla Figueiredo ◽  
Marley Vellasco ◽  
René González

The adequate automatic detection of driver fatigue is a very valuable approach for the prevention of traffic accidents. Devices that can determine drowsiness conditions accurately must inherently be portable, adaptable to different vehicles and drivers, and robust to conditions such as illumination changes or visual occlusion. With the advent of a new generation of computationally powerful embedded systems such as the Raspberry Pi, a new category of real-time and low-cost portable drowsiness detection systems could become standard tools. Usually, the proposed solutions using this platform are limited to the definition of thresholds for some defined drowsiness indicator or the application of computationally expensive classification models that limits their use in real-time. In this research, we propose the development of a new portable, low-cost, accurate, and robust drowsiness recognition device. The proposed device combines complementary drowsiness measures derived from a temporal window of eyes (PERCLOS, ECD) and mouth (AOT) states through a fuzzy inference system deployed in a Raspberry Pi with the capability of real-time response. The system provides three degrees of drowsiness (Low-Normal State, Medium-Drowsy State, and High-Severe Drowsiness State), and was assessed in terms of its computational performance and efficiency, resulting in a significant accuracy of 95.5% in state recognition that demonstrates the feasibility of the approach.


Author(s):  
Ibrahim Goni ◽  
Christopher U. Ngene ◽  
Manga I. ◽  
Auwal Nata’ala ◽  
Sunday J. Calvin

Tuberculosis is a contiguous disease that is causing death both in developed and developing countries. The main aim of this research work was to a developed an intelligent system for diagnosing Tuberculosis using adaptive neuro-fuzzy methodology. Eleven symptoms of tuberculosis which are persistent cough for more than two weeks, cough with blood, weight loss, tiredness, chest pain, fever, difficulty in breathing, loss of appetite, lymph node enlargement, history of TB contact and night Sweat are assigned with weights which are categorize best on severity level as mild, moderate, severe and very severe, yes and no which serve as inputs to the adaptive neuro-fuzzy inference system (ANFIS). MATLAB 7.0 is used to implement this experiment, Trapezoidal Membership function was used, back propagation algorithm was used for training and testing, the error obtain is 0.41777 at epoch 2 which shows that the training performance is exactly 99.58223 and testing performance of the system are 99.58197 at epoch 2.   


2015 ◽  
Vol 787 ◽  
pp. 322-326 ◽  
Author(s):  
V. Nirmala ◽  
K.R. Leelavathy ◽  
Sivapragasam Sowndharya ◽  
Parthiban Bama

A Fuzzy Inference System (FIS) is considered as an effective tool for solution of many complex engineering systems when ambiguity and uncertainty is associated with the systems. The water quality is an important issue of relevance in the context of present times. The proposed model is designed to predict Water Quality Index (WQI) for Chunnambar, Ariyankuppam, Puducherry Region, Southern India. A systematic investigation of the pollution level at Chunnambar from March 2013 to February 2014 was carried out. The untreated domestic wastes from various parts of the Ariyankuppam town are directly discharged into the river which leads to increased level of pollution. The present studies emphasis on the magnitude of pollution by monitoring key water quality parameters such as Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), pH and Temperature. FIS simplifies and speed up the computation of WQI as compared to the currently existing standards. In this paper, the proposed model is compared with Indian Water Quality Index (IWQI) and it is found that the designed model predicts accurately.


Author(s):  
Haripriyan Uthayakumar ◽  
Perarasu Thangavelu ◽  
Saravanathamizhan Ramanujam

Introduction: The estimation of air pollution level is well indicated by Air Quality Index (AQI), which tells how unhealthy the ambient air is and how polluted it can become in near future. Hence, the predictions or modeling of AQI is always of greater concern among researchers and this present study aims to develop such a model for forecasting the AQI. Materials and methods: A combination of Artificial Neural Network (ANN) and Fuzzy logic (FL) system, called Adaptive Neuro-Fuzzy Inference System (ANFIS) have been considered for model development. Daily air quality data (PM2.5 and PM10) and meteorological data (temperature and humidity) over a period of March 2020 to March 2021 were used as the input data and AQI as the output variable for the ANFIS model. The performances of models were evaluated based on Root Mean Square Error (RMSE), Regression coefficient (R2) and Average Absolute Relative Deviation (AARD). Results: A total of 100 datasets is split into training (70), testing (15) and simulation (15). Gaussian and Constant membership functions were employed for classifications and the final index consisted of 81 inference (IF/THEN) rules. The ANFIS Simulation result shows an R2 and RMSE value of 0.9872 and 0.0287 respectively. Conclusion: According to the results from this study, ANFIS based AQI is a comprehensive tool for classification of air quality and it is inclined to produce accurate results. Therefore, local authorities in air quality assessment and management schemes can apply these reliable and suitable results.


2017 ◽  
Vol 3 (1) ◽  
pp. 36-48
Author(s):  
Erwan Ahmad Ardiansyah ◽  
Rina Mardiati ◽  
Afaf Fadhil

Prakiraan atau peramalan beban listrik dibutuhkan dalam menentukan jumlah listrik yang dihasilkan. Ini menentukan  agar tidak terjadi beban berlebih yang menyebabkan pemborosan atau kekurangan beban listrik yang mengakibatkan krisis listrik di konsumen. Oleh karena itu di butuhkan prakiraan atau peramalan yang tepat untuk menghasilkan energi listrik. Teknologi softcomputing dapat digunakan  sebagai metode alternatif untuk prediksi beban litrik jangka pendek salah satunya dengan metode  Adaptive Neuro Fuzzy Inference System pada penelitian tugas akhir ini. Data yang di dapat untuk mendukung penelitian ini adalah data dari APD PLN JAWA BARAT yang berisikan laporan data beban puncak bulanan penyulang area gardu induk majalaya dari januari 2011 sampai desember 2014 sebagai data acuan dan data aktual januari-desember 2015. Data kemudian dilatih menggunakan metode ANFIS pada software MATLAB versi b2010. Dari data hasil pelatihan data ANFIS kemudian dilakukan perbandingan dengan data aktual dan data metode regresi meliputi perbandingan anfis-aktual, regresi-aktual dan perbandingan anfis-regresi-aktual. Dari perbandingan disimpulkan bahwa data metode anfis lebih mendekati data aktual dengan rata-rata 1,4%, menunjukan prediksi ANFIS dapat menjadi referensi untuk peramalan beban listrik dimasa depan.


2009 ◽  
Vol 8 (3) ◽  
pp. 887-897
Author(s):  
Vishal Paika ◽  
Er. Pankaj Bhambri

The face is the feature which distinguishes a person. Facial appearance is vital for human recognition. It has certain features like forehead, skin, eyes, ears, nose, cheeks, mouth, lip, teeth etc which helps us, humans, to recognize a particular face from millions of faces even after a large span of time and despite large changes in their appearance due to ageing, expression, viewing conditions and distractions such as disfigurement of face, scars, beard or hair style. A face is not merely a set of facial features but is rather but is rather something meaningful in its form.In this paper, depending on the various facial features, a system is designed to recognize them. To reveal the outline of the face, eyes, ears, nose, teeth etc different edge detection techniques have been used. These features are extracted in the term of distance between important feature points. The feature set obtained is then normalized and are feed to artificial neural networks so as to train them for reorganization of facial images.


Sign in / Sign up

Export Citation Format

Share Document