scholarly journals Optimal Battery Storage Participation in European Energy and Reserves Markets

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6629
Author(s):  
Kristina Pandžić ◽  
Ivan Pavić ◽  
Ivan Andročec ◽  
Hrvoje Pandžić

Battery energy storage is becoming an important asset in modern power systems. Considering the market prices and battery storage characteristics, reserve provision is a tempting play fields for such assets. This paper aims at filling the gap by developing a mathematically rigorous model and applying it to the existing and future electricity market design in Europe. The paper presents a bilevel model for optimal battery storage participation in day-ahead energy market as a price taker, and reserve capacity and activation market as a price maker. It uses an accurate battery charging model to reliably represent the behavior of real-life lithium-ion battery storage. The proposed bilevel model is converted into a mixed-integer linear program by using the Karush–Kuhn–Tucker optimality conditions. The case study uses real-life data on reserve capacity and activation costs and quantities in German markets. The reserves activation quantities and activation prices are modeled by a set of credible scenarios in the lower-level problem. Finally, a sensitivity analysis is conducted to comprehend to what extent do battery storage bidding prices affect its overall profit.

2018 ◽  
Vol 8 (10) ◽  
pp. 1978 ◽  
Author(s):  
Jaber Valinejad ◽  
Taghi Barforoshi ◽  
Mousa Marzband ◽  
Edris Pouresmaeil ◽  
Radu Godina ◽  
...  

This paper presents the analysis of a novel framework of study and the impact of different market design criterion for the generation expansion planning (GEP) in competitive electricity market incentives, under variable uncertainties in a single year horizon. As investment incentives conventionally consist of firm contracts and capacity payments, in this study, the electricity generation investment problem is considered from a strategic generation company (GENCO) ′ s perspective, modelled as a bi-level optimization method. The first-level includes decision steps related to investment incentives to maximize the total profit in the planning horizon. The second-level includes optimization steps focusing on maximizing social welfare when the electricity market is regulated for the current horizon. In addition, variable uncertainties, on offering and investment, are modelled using set of different scenarios. The bi-level optimization problem is then converted to a single-level problem and then represented as a mixed integer linear program (MILP) after linearization. The efficiency of the proposed framework is assessed on the MAZANDARAN regional electric company (MREC) transmission network, integral to IRAN interconnected power system for both elastic and inelastic demands. Simulations show the significance of optimizing the firm contract and the capacity payment that encourages the generation investment for peak technology and improves long-term stability of electricity markets.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6189
Author(s):  
Maria M. Symeonidou ◽  
Effrosyni Giama ◽  
Agis M. Papadopoulos

The current EU energy and climate policy targets a significant reduction of carbon dioxide emissions in the forthcoming years. Carbon pricing, embedded in the EU emissions trading system, aims at achieving emission reductions in a more evenly spread way and at the lowest overall cost for society, compared with other environmental policy tools, such as coal or electricity taxes, or incentives such as subsidies on renewables. Still, the implementation of the decarbonization policy depends on several technical parameters such as the type, size and connectivity of the energy system as well as economic restrictions that occur. Within this paper, an optimization tool will be presented, focusing on cleaner energy production and on the control and reduction of environmental impact regarding energy storage solutions. Various types of batteries are examined and evaluated towards this direction. Emphasis is given to setting new criteria for the decision-making process, considering the size of battery storage and the selection of the battery type based on the environmental impact assessment parameter. The objective function of the system is formulated so as to evaluate, monitor and finally minimize environmental emissions, focusing mainly on carbon emissions. Optimization is carried out based on mixed integer nonlinear programming (MINLP). Two of the main battery types compared are lead–acid and lithium-ion; both of them result in results worth mentioning regarding the replacement impact (seven times during system lifetime for lead–acid) and the total environmental impact comparison (lithium-ion may reach a 60% reduction compared to lead–acid). Case studies are presented based on representative scenarios solved, which underline the importance of choosing the appropriate scope for each case and demonstrate the potential of the tool developed, as well as the possibilities for its further improvement.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2006 ◽  
Author(s):  
Matteo Moncecchi ◽  
Claudio Brivio ◽  
Stefano Mandelli ◽  
Marco Merlo

Off-grid power systems based on photovoltaic and battery energy storage systems are becoming a solution of great interest for rural electrification. The storage system is one of the most crucial components since inappropriate design can affect reliability and final costs. Therefore, it is necessary to adopt reliable models able to realistically reproduce the working condition of the application. In this paper, different models of lithium-ion battery are considered in the design process of a microgrid. Two modeling approaches (analytical and electrical) are developed based on experimental measurements. The derived models have been integrated in a methodology for the robust design of off-grid electric power systems which has been implemented in a MATLAB-based computational tool named Poli.NRG (POLItecnico di Milano—Network Robust desiGn). The procedure has been applied to a real-life case study to compare the different battery energy storage system models and to show how they impact on the microgrid design.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2134
Author(s):  
Ramy Georgious ◽  
Rovan Refaat ◽  
Jorge Garcia ◽  
Ahmed A. Daoud

Energy storage systems (ESSs) are gaining a lot of interest due to the trend of increasing the use of renewable energies. This paper reviews the different ESSs in power systems, especially microgrids showing their essential role in enhancing the performance of electrical systems. Therefore, The ESSs classified into various technologies as a function of the energy storage form and the main relevant technical parameters. In this review paper, the most common classifications are presented, summarized, and compared according to their characteristics. A specific interest in electrochemical ESSs, especially battery energy storage systems, focusing on their classifications due to their importance in the residential sector. Besides that, the benefits and drawbacks of Lithium-Ion (Li-Ion) batteries are discussed due to their significance. Finally, the environmental impact of these ESSs is discussed.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Eike Mollenhauer ◽  
Andreas Christidis ◽  
George Tsatsaronis

Combined heat and power (CHP) plants are efficient regarding fuel, costs, and emissions compared to the separate generation of heat and electricity. Sinking revenues from sales of electricity due to sinking market prices endanger the economically viable operation of the plants. The integration of heat pumps (HP) and thermal energy storages (TESs) represents an option to increase the flexibility of CHP plants so that electricity can be produced only when the market conditions are favorable. The investigated district heating system is located in Germany, where the electricity market is influenced by a high share of renewable energies. The price-based unit-commitment and dispatch problem is modeled as a mixed integer linear program (MILP) with a temporal resolution of 1 h and a planning horizon of 1 yr. This paper presents the optimal operation of a TES unit and a HP in combination with CHP plants as well as synergies or competitions between them. Coal and gas-fired CHP plants with back pressure or extraction condensing steam turbines (STs) are considered, and their results are compared to each other.


2018 ◽  
Vol 10 (10) ◽  
pp. 3811 ◽  
Author(s):  
Jaber Valinejad ◽  
Mousa Marzband ◽  
Mudathir Funsho Akorede ◽  
Ian D Elliott ◽  
Radu Godina ◽  
...  

The aim of this paper is to provide a bi-level model for the expansion planning on wind investment while considering different load ranges of power plants in power systems at a multi-stage horizon. Different technologies include base load units, such as thermal and water units, and peak load units such as gas turbine. In this model, subsidies are considered as a means to encourage investment in wind turbines. In order that the uncertainties related to demand and the wind turbine can be taken into consideration, these effects are modelled using a variety of scenarios. In addition, the load demand is characterized by a certain number of demand blocks. The first-level relates to the issue of investment in different load ranges of power plants with a view to maximizing the investment profit whilst the second level is related to the market-clearing where the priority is to maximize the social welfare benefits. The bi-level optimization problem is then converted to a dynamic stochastic mathematical algorithm with equilibrium constraint (MPEC) and represented as a mixed integer linear program (MILP) after linearization. The proposed framework is examined on a real transmission network. Simulation results confirm that the proposed framework can be a useful tool for analyzing the investments different load ranges of power plants on long-term strategic decision-making.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8069
Author(s):  
Ekaterina Bayborodina ◽  
Michael Negnevitsky ◽  
Evan Franklin ◽  
Alison Washusen

Conventional fossil-fuel-based power systems are undergoing rapid transformation via the replacement of coal-fired generation with wind and solar farms. The stochastic and intermittent nature of such renewable sources demands alternative dispatchable technology capable of meeting system stability and reliability needs. Battery energy storage can play a crucial role in enabling the high uptake of wind and solar generation. However, battery life is very sensitive to the way battery energy storage systems (BESS) are operated. In this paper, we propose a framework to analyse battery operation in the Australian National Electricity Market (NEM) electricity spot and contingency reserve markets. We investigate battery operation in different states of Australia under various operating strategies. By considering battery degradation costs within the operating strategy, BESS can generate revenue from the energy market without significantly compromising battery life. Participating in contingency markets, batteries can substantially increase their revenue with almost no impact on battery health. Finally, when battery systems are introduced into highly volatile markets (such as South Australia) more aggressive cycling of batteries leads to accelerated battery aging, which may be justified by increased revenue. The findings also suggest that with falling replacement costs, the operation of battery energy systems can be adjusted, increasing immediate revenues and moving the battery end-of-life conditions closer.


Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 59
Author(s):  
Andrés F. Peñaranda ◽  
David Romero-Quete ◽  
Camilo A. Cortés

This study seeks to determine a suitable arbitrage strategy that allows a battery energy storage system (BESS) owner to obtain the maximum economic benefits when participating in the Colombian electricity market. A comparison of different arbitration strategies from the literature, such as seasonal, statistical, and neural networks-based models, is performed. To determine BESS’s optimal operation, a Mixed Integer Linear Programming (MILP) optimization problem is formulated, including a battery degradation model based on an upper piecewise linear approximation method. A financial evaluation of the different arbitrage strategies is carried out, resulting, for all the analyzed cases, in a negative net present value (NPV); thus, the results show that the income obtained from BESS when only performing energy arbitrage in the Colombian market do not compensate the investment costs. Results have also shown that strategies based on statistical and prediction models have a better performance than seasonal strategies, especially in atypical circumstances such as COVID-19.


2021 ◽  
Vol 11 (3) ◽  
pp. 1135
Author(s):  
Zhongjie Guo ◽  
Wei Wei ◽  
Maochun Wang ◽  
Jian Li ◽  
Shaowei Huang ◽  
...  

The uncertain natures of renewable energy lead to its underutilization; energy storage unit (ESU) is expected to be one of the most promising solutions to this issue. This paper evaluates the impact of ESUs on renewable energy curtailment. For any fixed renewable power output, the evaluation model minimizes the total amount of curtailment and is formulated as a mixed integer linear program (MILP) with the complementarity constraints on the charging and discharging behaviors of ESUs; by treating the power and energy capacities of ESUs as parameters, the MILP is transformed into a multi-parametric MILP (mp-MILP), whose optimal value function (OVF) explicitly maps the parameters to the renewable energy curtailment. Further, given the inexactness of uncertainty’s probability distribution, a distributionally robust mp-MILP (DR-mp-MILP) is proposed that considers the worst distribution in a neighborhood of the empirical distribution built by the representative scenarios. The DR-mp-MILP has a max–min form and is reformed as a canonical mp-MILP by duality theory. The proposed method was validated on the modified IEEE nine-bus systems; the parameterized OVFs provide insightful suggestions on storage sizing.


Author(s):  
L Farrier ◽  
R Bucknall

In the future warship power and propulsion systems need to be designed for increased flexibility, in part to sustain the demand of changing load profiles such as those characterised by high ramp-rates of new weapons and sensors intended to support enhanced future warfighting capability. Lithium-ion based battery performance is improving at a prominent pace in the automotive sector, increasing in both energy and power density, thus there is now an opportunity to exploit these characteristics for naval power systems. A common use energy storage system could facilitate benefits such as reduced fuel burn and prime mover running hours by reducing the number of running generator sets. Importantly, the improvement in battery systems, has reached a juncture where the technology could be considered to support directed energy weapons. The feasibility of a Lithium-ion NMC based energy storage system, capable of high discharge rates, to power predicted laser directed energy weapons using time domain simulation is investigated in this paper. Results verify that the simulated system is capable of high rates of fire for extended periods subject to state of charge operating limitations.


Sign in / Sign up

Export Citation Format

Share Document