scholarly journals Multivariable Unconstrained Pattern Search Method for Optimizing Digital PID Controllers Applied to Isolated Forward Converter

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 77
Author(s):  
Ghulam Abbas ◽  
Muhammad Usman Asad ◽  
Jason Gu ◽  
Salem Alelyani ◽  
Valentina E. Balas ◽  
...  

Most of the traditional PID tuning methods are heuristic in nature. The heuristic approach-based tuned PID controllers show only nominal performance. In addition, in the case of a digital redesign approach, mapping of the heuristically-designed continuous-time PID controllers into discrete-time PID controllers and in case of the direct digital design approach, mapping of the continuous-time plant (forward converter) into the discrete-time plant, results in frequency distortion (or warping). Besides this, nonlinear elements such as ADC and DAC, and delay in the digital control loop deteriorate the control performance. There is a need to tune conventionally-designed digital controllers to enhance performance. This paper proposes optimized discrete-time PID controllers for a forward DC–DC converter operating in continuous conduction mode (CCM). The considered conventional digital PID controllers designed on the basis of the digital redesign and direct digital approaches are tuned by one of the multivariable unconstrained pattern search methods named Hooke–Jeeves (H–J) search method to ensure excellent output voltage regulation performance against the changes in input voltage and load current. Numerical results show that the H–J-based optimized PID compensated forward converter system shows tremendous improvement in performance compared to its unoptimized counterpart and simulated annealing (SA)-based compensated system, thus justifying the applicability of the H–J method for enhancing the performance.

Author(s):  
T. Emami ◽  
J. M. Watkins

In this paper a graphical technique is introduced for finding all continuous-time and discrete-time proportional integral derivative (PID) controllers that satisfy the discrete-time H∞ complementary sensitivity constraint of an arbitrary order transfer function with time delay. These problems can be solved by finding all achievable PID controllers that simultaneously stabilize the closed-loop characteristic polynomial and satisfy constraints defined by a set of related complex polynomials. The key advantage of this procedure is that this method depends only on the frequency response of the system. If the plant transfer function is given, the procedure is still appropriate. The delta operator is used to describe the discrete-time controllers because it not only possesses numerical properties superior to the discrete-time shift operator, but also converges to the continuous-time controller as the sampling period approaches zero. A unified approach allows us to use the same procedure for discrete-time and continuous-time complementary sensitivity design of PID controllers. The method is demonstrated by using the experimental frequency response of a DC motor with communication delay for H∞ complementary sensitivity design of PID controllers.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5170
Author(s):  
Marian Blachuta ◽  
Robert Bieda ◽  
Rafal Grygiel

The huge influence of the sampling rate on the performance of the digital PID control of a voltage source inverter (VSI) is revealed. It is shown that an appropriately chosen continuous-time model of a digital controller with the PWM power converter behaves like the actual discrete-time system, which allows for a simple controller analysis and design. The variable structure nature of the inverter with both the RC rectifier and an abruptly changing resistive load with two modes of operation within the sampling period is directly taken into account. Two simulation models, a discrete-time PWM and a continuous-time, of an inverter are presented, which are used to tune the PID controller and to evaluate the control performance. The behavior of the system in both modes is explained on the basis of the root loci and frequency characteristics. The results obtained for three sampling rates: 12.8, 25.6, and 51.2 kHz, are presented and compared with an actual VSI experiment. A comparison with other results obtained for this VSI shows that properly tuned PID control outperforms the more sophisticated solutions based on the coefficient diagram method (CDM) and the passivity based control (PBC).


Author(s):  
Navid Mohsenizadeh ◽  
Swaroop Darbha ◽  
Shankar P. Bhattacharyya

In this paper, we present a new method of synthesizing digital PID controllers for discrete-time, Linear Time Invariant (LTI) Systems satisfying a class of transient response specifications. The problem of synthesizing a controller to achieve desirable transient specifications, such as requiring the transient response to be within an allowable range of overshoot, can be carried out as a problem of guaranteeing the impulse response of an appropriate closed loop error transfer function to be non-negative. An earlier result by the authors provides necessary and sufficient conditions for the impulse response of a discrete-time transfer function to be non-negative in terms of the requirement of a sequence of polynomials to be sign-invariant on the interval [1, ∞). An application of this result to the error transfer function yields a sequence of polynomials which are required to be sign-invariant on [1, ∞) but whose coefficients are polynomial functions of the controller gains k1, k2 and k3.


Author(s):  
Tooran Emami ◽  
John M. Watkins

In this paper a graphical technique is introduced for finding all continuous-time or discrete-time proportional integral derivative (PID) controllers that satisfy a weighted sensitivity constraint of an arbitrary order transfer function with time delay. These problems can be solved by finding all achievable PID controllers that simultaneously stabilize the closed-loop characteristic polynomial and satisfy constraints defined by a set of related complex polynomials. The key advantage of this procedure is that this method depends only on the frequency response of the system. The delta operator is used to describe the controllers in a discrete-time model, because it not only possesses numerical properties superior to the discrete-time shift operator, but also converges to the continuous-time controller as the sampling period approaches zero. A unified approach allows us to use the same procedure for discrete-time and continuous-time weighted sensitivity design of PID controllers.


2017 ◽  
Vol E100.C (10) ◽  
pp. 858-865 ◽  
Author(s):  
Yohei MORISHITA ◽  
Koichi MIZUNO ◽  
Junji SATO ◽  
Koji TAKINAMI ◽  
Kazuaki TAKAHASHI

Psychometrika ◽  
2021 ◽  
Author(s):  
Oisín Ryan ◽  
Ellen L. Hamaker

AbstractNetwork analysis of ESM data has become popular in clinical psychology. In this approach, discrete-time (DT) vector auto-regressive (VAR) models define the network structure with centrality measures used to identify intervention targets. However, VAR models suffer from time-interval dependency. Continuous-time (CT) models have been suggested as an alternative but require a conceptual shift, implying that DT-VAR parameters reflect total rather than direct effects. In this paper, we propose and illustrate a CT network approach using CT-VAR models. We define a new network representation and develop centrality measures which inform intervention targeting. This methodology is illustrated with an ESM dataset.


1967 ◽  
Vol 4 (1) ◽  
pp. 192-196 ◽  
Author(s):  
J. N. Darroch ◽  
E. Seneta

In a recent paper, the authors have discussed the concept of quasi-stationary distributions for absorbing Markov chains having a finite state space, with the further restriction of discrete time. The purpose of the present note is to summarize the analogous results when the time parameter is continuous.


Sign in / Sign up

Export Citation Format

Share Document