scholarly journals Parametric Study of Air Infiltration in Residential Buildings—The Effect of Local Conditions on Energy Demand

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 127
Author(s):  
Artur Miszczuk ◽  
Dariusz Heim

Airtightness is nowadays one of the physical parameters which determine overall building energy performance. In a wide range of states, the upper limit for air change rate at a Pa (na), air permeability rate at a Pa (qa), or specific leakage rate at a Pa (wa) is determined by the formal regulations. It should be highlighted that airtightness requirements are mainly the same around the world, disregarding any site and climatic conditions. The main goal of the presented work was to reveal the effect of individual location and surrounding infiltration rate and heat demand. The analyses were done using numerical techniques and computational models of the three buildings developed and calibrated based on the blower door test results. The compared buildings characterize by a similar geometry but differ in the air change rate at 50 Pa (n50). Analyses done for different locations and levels of sheltering by surrounding elements allow the determination of the real effect of local conditions. The obtained differences in energy demand between two locations from the same climatic zone were from 70% to 90%, depending on the airtightness of the buildings. Considering different sheltered conditions, the differences for the same location can be even 200%. The obtained results allowed for the formulation of the general conclusion that building location and level of exposure could be considered in future airtightness regulations.

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3360 ◽  
Author(s):  
Carolina Aparicio-Fernández ◽  
José-Luis Vivancos ◽  
Paula Cosar-Jorda ◽  
Richard A. Buswell

In this paper, the building energy performance modelling tools TRNSYS (TRaNsient SYstem Simulation program) and TRNFlow (TRaNsient Flow) have been used to obtain the energy demand of a domestic building that includes the air infiltration rate and the effect of natural ventilation by using window operation data. An initial model has been fitted to monitoring data from the case study, building over a period when there were no heat gains in the building in order to obtain the building infiltration air change rate. After this calibration, a constant air-change rate model was established alongside two further models developed in the calibration process. Air change rate has been explored in order to determine air infiltrations caused by natural ventilation due to windows being opened. These results were compared to estimates gained through a previously published method and were found to be in good agreement. The main conclusion from the work was that the modelling ventilation rate in naturally ventilated residential buildings using TRNSYS and TRNSFlow can improve the simulation-based energy assessment.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6727
Author(s):  
Alexander Martín-Garín ◽  
José Antonio Millán-García ◽  
Juan María Hidalgo-Betanzos ◽  
Rufino Javier Hernández-Minguillón ◽  
Abderrahmane Baïri

Airtightness is a major issue in architectural design and it has a significant impact on the energy performance of buildings. Moreover, the energy behaviour of built heritage is due, to its singular characteristics, still a great unknown. The aim of this study is to establish a better knowledge of the airtightness of historical buildings, based on an in depth field study using blower-door tests. A set of 37 enclosures were analyzed inside eight buildings located in historical areas of a Spanish city with a significant built heritage. They were constructed between 1882 and 1919 and include diverse construction typologies applied for many building uses such as residential, cultural, educational, administrative and emblematic. The results indicate lower values compared to other previous airtightness studies of historical buildings. The average air change rate was found to be n50 = 9.03 h−1 and the airtightness of the enclosures presented a wide range of between 0.68 and 37.12 h−1. Three main levels of airtightness were identified with two thirds of the tested samples belonging to the intermediate level between 3–20 h−1. To conclude, several correlations have been developed which provide a method to estimate air leakage and could serve as a basis for energy performance studies of these kinds of building.


2019 ◽  
Vol 282 ◽  
pp. 02101
Author(s):  
Tomasz Kisilewicz ◽  
Katarzyna Nowak-Dzieszko ◽  
Małgorzata Rojewska-Warchał

The knowledge of the air flow and air exchange in the building is critical both on the design and operation stage of the building. Infiltration of air interferes with the mechanical ventilation and determines the proper functioning of the natural ventilation system, still commonly used in the standard buildings. The building airtightness can be described by n50 parameter, however it does not specify the real air exchange in natural conditions. According to the simple procedure of the standard EN ISO 13789, factor n50 may be easily converted to the monthly averaged air change rate. However, it is difficult to accept the same value of air change rate in any month of a year, as it is often done in the certification procedures. More precise, climate dependent conversion procedures have been elaborated in USA, but they were developed for the specific local building technology and local climate conditions. This paper presents the results of the preliminary measurements conducted in a single family house in Poland, built in a heavy-weight technology. The real air exchange rate was measured in various climatic conditions by means of gas tracing method, with CO2 as the tracer gas, in order to prove a relationship between the enhanced procedure and the external conditions. Acceptable agreement between the results of the measurement and model calculations was obtained. Based on the preliminary results, the authors determined the more realistic influence of the enhanced algorithm on the ventilation energy demand. The use of the simplified model resulted in case of the analyzed object in 15% overestimation of the ventilation thermal losses.


2019 ◽  
Vol 3 (1) ◽  
pp. 14
Author(s):  
Amir Ghoreishi

Exterior Thermal Mass (eTM) is known to improve building energy and thermal comfort performance. Despite its known benefits, studies to date have not thoroughly addressed the effects of eTM on building environmental performance by considering a wide range of influential factors and various climatic conditions. This paper addresses such a gap in the body of knowledge by conducting a comprehensive and detailed analysis of eTM impacts on residential buildings’ energy performance. Using quantitative research and simulation analyses, this study has found various trends of energy reductions and, in a few cases, energy increases depending upon the location of projects. In fact, the cooling energies are shown to increase of up to 4% for the scenario of 20 cm thickness wall in several locations. Aiming for better energy and design load scenarios, this research has also established the optimal eTM depth to help architects and engineers make informed design decisions with regard to building envelopes, which is particularly important for developing countries with similar climates studied in this paper, where the use of masonry materials is widely common. As for future steps, further exploration of cooling energy increase phenomenon, which was observed for several climates is recommended. Also, coupling eTM with code-required thermal insulation based upon specific climatic locations and evaluate their integrated performance can be considered.


2021 ◽  
Vol 13 (11) ◽  
pp. 6018
Author(s):  
Theo Lynn ◽  
Pierangelo Rosati ◽  
Antonia Egli ◽  
Stelios Krinidis ◽  
Komninos Angelakoglou ◽  
...  

The building stock accounts for a significant portion of worldwide energy consumption and greenhouse gas emissions. While the majority of the existing building stock has poor energy performance, deep renovation efforts are stymied by a wide range of human, technological, organisational and external environment factors across the value chain. A key challenge is integrating appropriate human resources, materials, fabrication, information and automation systems and knowledge management in a proper manner to achieve the required outcomes and meet the relevant regulatory standards, while satisfying a wide range of stakeholders with differing, often conflicting, motivations. RINNO is a Horizon 2020 project that aims to deliver a set of processes that, when working together, provide a system, repository, marketplace and enabling workflow process for managing deep renovation projects from inception to implementation. This paper presents a roadmap for an open renovation platform for managing and delivering deep renovation projects for residential buildings based on seven design principles. We illustrate a preliminary stepwise framework for applying the platform across the full-lifecycle of a deep renovation project. Based on this work, RINNO will develop a new open renovation software platform that will be implemented and evaluated at four pilot sites with varying construction, regulatory, market and climate contexts.


2021 ◽  
pp. 174425912110560
Author(s):  
Yassine Chbani Idrissi ◽  
Rafik Belarbi ◽  
Mohammed Yacine Ferroukhi ◽  
M’barek Feddaoui ◽  
Driss Agliz

Hygrothermal properties of building materials, climatic conditions and energy performance are interrelated and have to be considered simultaneously as part of an optimised building design. In this paper, a new approach to evaluate the energy consumption of residential buildings in Morocco is presented. This approach is based on the effect of coupled heat and moisture transfer in typical residential buildings and on their responses to the varied climatic conditions encountered in the country. This approach allows us to evaluate with better accuracy the response of building energy performance and the indoor comfort of building occupants. Annual energy consumption, cooling and heating energy requirements were estimated considering the six climatic zones of Morocco. Based on the results, terms related to coupled heat and moisture transfer can effectively correct the existing energy consumption calculations of the six zones of Morocco, which currently do not consider energy consumption due to coupled heat and moisture transfer.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1309 ◽  
Author(s):  
Tomasz Szul ◽  
Stanisław Kokoszka

In many regions, the heat used for space heating is a basic item in the energy balance of a building and significantly affects its operating costs. The accuracy of the assessment of heat consumption in an existing building and the determination of the main components of heat loss depends to a large extent on whether the energy efficiency improvement targets set in the thermal upgrading project are achieved. A frequent problem in the case of energy calculations is the lack of complete architectural and construction documentation of the analyzed objects. Therefore, there is a need to search for methods that will be suitable for a quick technical analysis of measures taken to improve energy efficiency in existing buildings. These methods should have satisfactory results in predicting energy consumption where the input is limited, inaccurate, or uncertain. Therefore, the aim of this work was to test the usefulness of a model based on Rough Set Theory (RST) for estimating the thermal energy consumption of buildings undergoing an energy renovation. The research was carried out on a group of 109 thermally improved residential buildings, for which energy performance was based on actual energy consumption before and after thermal modernization. Specific sets of important variables characterizing the examined buildings were distinguished. The groups of variables were used to estimate energy consumption in such a way as to obtain a compromise between the effort of obtaining them and the quality of the forecast. This has allowed the construction of a prediction model that allows the use of a fast, relatively simple procedure to estimate the final energy demand rate for heating buildings.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2496 ◽  
Author(s):  
Laura Carnieletto ◽  
Borja Badenes ◽  
Marco Belliardi ◽  
Adriana Bernardi ◽  
Samantha Graci ◽  
...  

The design of ground source heat pumps is a fundamental step to ensure the high energy efficiency of heat pump systems throughout their operating years. To enhance the diffusion of ground source heat pump systems, two different tools are developed in the H2020 research project named, “Cheap GSHPs”: A design tool and a decision support system. In both cases, the energy demand of the buildings may not be calculated by the user. The main input data, to evaluate the size of the borehole heat exchangers, is the building energy demand. This paper presents a methodology to correlate energy demand, building typologies, and climatic conditions for different types of residential buildings. Rather than envelope properties, three insulation levels have been considered in different climatic conditions to set up a database of energy profiles. Analyzing European climatic test reference years, 23 locations have been considered. For each location, the overall energy and the mean hourly monthly energy profiles for heating and cooling have been calculated. Pre-calculated profiles are needed to size generation systems and, in particular, ground source heat pumps. For this reason, correlations based on the degree days for heating and cooling demand have been found in order to generalize the results for different buildings. These correlations depend on the Köppen–Geiger climate scale.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2516 ◽  
Author(s):  
Alex Gonzalez Caceres

Dwellings built between 1945 and 1980 have the largest energy demand in the EU, which by 2009 represented 70% of the final energy use in buildings. A great portion of these dwellings have not been retrofitted and most of them were not built with any energy efficiency measures, since most of the energy regulations were implemented after the oil crisis in the 70s. To face this issue several actions were taken in the EU, among these, the implementation of Energy Performance Certification, which includes a Recommendation List of Measures (RLMs) to retrofit the property. The main objective of this study is to identify the weaknesses of the RLMs and to suggest changes to improve the quality and impact of this feature. The results indicate that to retrofit an existing building, the RLMs lack information for decision-making. The study suggests important barriers to overcome for achieving potential energy reductions in existing residential buildings, highlighting improvements to the recommendation content and its implementation.


Sign in / Sign up

Export Citation Format

Share Document