scholarly journals In-Depth Analysis of Organic Solar Cells Using Transport Equation and Optical Transfer Matrix Method with Detailed Analytical Derivations

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 735
Author(s):  
Md. Shofiqul Islam

Thin-film organic solar cell (OSC) performances have been investigated in detail by improved analytical computation in this work. The generation of excitons inside OSC has been estimated by using the optical transfer matrix method (OTMM) to include the optical phenomena of the incident light. The dissociation of these excitons into free charge carriers has been investigated to find the most appropriate one. OSC performances have been evaluated by an improved analytical solution of electrical transport equations including (i) exciton generation obtained from OTMM, (ii) dissociation probability incorporating Gaussian distribution to account for the natural fact of the difference in photon-energy producing excitons, (iii) recombination of charge carriers, all together. OSC properties such as JSC, VOC, FF, PCE, Pmax, absorbance, and quantum efficiency have been investigated with the variation of different parameters; this might be useful to improve OSC. Again, the presented detailed derivations of analytical expressions would be helpful for clear understanding.

Author(s):  
Francisco V. Rami´rez ◽  
Amador M. Guzma´n

Surface plasmons enhanced light absorption in organic solar cells based on a photoactive poly(2-methoxyl-5-(2-ethyl-hexyloxy)-1.4-phenylenevinylene):(6.6)-phenyl-C61-butyric-acid-methylester (MEH-PPV:PCBM), is studied by a computational model based on the transfer matrix method (TMM). Two physical situation with and without the bulk heterojunction film are considered and modeled on a 2D array of silver nanoparticles with a diameter of 40 nm embedded in a 50-nm-thick layer. The numerical simulation results that include optical properties in the wave length range of 350 and 750 nm, present qualitative and quantitative good agreement with previous results obtained by Duche et al (2009) in both conditions. Optical absorption results for incident light at an oblique angle of incidence are also obtained, with the purpose of determining the effect of the angle of incidence on the absorption properties.


Photonics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Heeso Noh ◽  
Jai-Min Choi

We numerically demonstrate one-way zero reflection using the transfer matrix method. Using simulations, we adjusted the thickness of SiO2 layers in a simple SiO2-Au-SiO2 layer structure. We found two solutions, 47 nm-10 nm-32 nm and 71 nm-10 nm-60 nm, which are the thicknesses for one-way zero reflection at a wavelength of 560 nm. We confirmed it with reflection spectra, where reflectance is zero for forwardly incident light and 2.5% for backwardly incident light at the wavelength 560 nm, and thickness 47 nm-10 nm-32 nm.


Sign in / Sign up

Export Citation Format

Share Document