scholarly journals Zero Energy Building Economic and Energetic Assessment with Simulated and Real Data Using Photovoltaics and Water Flow Glazing

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3272
Author(s):  
Fernando del Ama Gonzalo ◽  
Belen Moreno Santamaria ◽  
José Antonio Ferrándiz Gea ◽  
Matthew Griffin ◽  
Juan A. Hernandez Ramos

The new paradigm of Net Zero Energy buildings is a challenge for architects and engineers, especially in buildings with large glazing areas. Water Flow Glazing (WFG) is a dynamic façade technology shown to reduce heating and cooling loads for buildings significantly. Photovoltaic panels placed on building roofs can generate enough electricity from solar energy without generating greenhouse gases in operation or taking up other building footprints. This paper investigates the techno-economic viability of a grid-connected solar photovoltaic system combined with water flow glazing. An accurate assessment of the economic and energetic feasibility is carried out through simulation software and on-site tests on an actual prototype. The assessment also includes the analysis of global warming potential reduction. A prototype with WFG envelope has been tested. The WFG prototype actual data reported primary energy savings of 62% and 60% CO2 equivalent emission reduction when comparing WFG to a reference triple glazing. Finally, an economic report of the Photovoltaic array showed the Yield Factor and the Levelized Cost of Energy of the system. Savings over the operating lifetime can compensate for the high initial investment that these two technologies require.

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 895 ◽  
Author(s):  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Argun Paragamyan ◽  
Anna Pellegrino ◽  
Vincenzo Corrado

Directive 2010/31/EU promotes the refurbishment of existing buildings to change them into nearly zero-energy buildings (nZEBs). Within this framework, it is of crucial importance to guarantee the best trade-off between energy performance and indoor environmental quality (IEQ). The implications of a global refurbishment scenario on thermal and visual comfort are assessed in this paper pertaining to an existing office building. The retrofit actions applied to achieve the nZEB target consist of a combination of envelope and technical building systems refurbishment measures, involving both HVAC and lighting. Energy and comfort calculations were carried out through dynamic simulation using Energy Plus and DIVA, for the thermal and visual performance assessments, respectively. The results point out that energy retrofit actions on the building envelope would lead to significant improvements in the thermal performance, regarding both energy savings (−37% of the annual primary energy for heating) and thermal comfort. However, a daylighting reduction would occur with a consequent higher electricity demand for lighting (36%). The research presents a detailed approach applicable to further analyses aimed at optimizing the energy efficiency measures in order to reduce the imbalance between visual and thermal comfort and to ensure the best performance in both domains.


2020 ◽  
Vol 4 (2) ◽  
pp. 27 ◽  
Author(s):  
Marcel Loewert ◽  
Michael Riedinger ◽  
Peter Pfeifer

Climate change calls for a paradigm shift in the primary energy generation that comes with new challenges to store and transport energy. A decentralization of energy conversion can only be implemented with novel methods in process engineering. In the second part of our work, we took a deeper look into the load flexibility of microstructured Fischer–Tropsch synthesis reactors to elucidate possible limits of dynamic operation. Real data from a 10 kW photovoltaic system is used to calculate a dynamic H2 feed flow, assuming that electrolysis is capable to react on power changes accordingly. The required CO flow for synthesis could either originate from a constantly operated biomass gasification or from a direct air capture that produces CO2; the latter is assumed to be dynamically converted into synthesis gas with additional hydrogen. Thus two cases exist, the input is constantly changing in syngas ratio or flow rate. These input data were used to perform challenging experiments with the pilot scale setup. Both cases were compared. While it appeared that a fluctuating flow rate is tolerable for constant product composition, a coupled temperature-conversion relationship model was developed. It allows keeping the conversion and product distribution constant despite highly dynamic feed flow conditions.


Author(s):  
Naimee Hasib ◽  
Junghyon Mun ◽  
Yong X. Tao

HVAC (Heating, Ventilation & Air Conditioning) system is the most significant part of a building which directly associated with human comfort. Modern HVAC system optimizes all the parameters like temperature, humidity and indoor air quality to give the occupant the best comfort. Beside human comfort some other crucial factors like installation, maintenance & operational cost, efficiency, availability and controlling method of the system need to be taken into consideration. This paper covers the study and comparison among two different HVAC systems to achieve the goal of finding the better effective HVAC system in terms of human comfort, efficiency considering North Texas climate. In this paper; power consumption, human comfort & efficiency analysis is done for the existing WWHP & WAHP system (in UNT ZØE) using Energy Plus simulation software. Calibration of the simulation data of the existing system is done comparing with the real data. After the baseline model is calibrated, simulation for other HVAC systems like evaporative cooler (EC) is conducted. The comparison analysis of both the HVAC systems shows the better effective HVAC system in North Texas weather considering all the relevant issues and challenges. The result will make UNT Zero Energy lab more energy efficient and a standard model towards a sustainable green future.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4099 ◽  
Author(s):  
Rokas Tamašauskas ◽  
Jolanta Šadauskienė ◽  
Dorota Anna Krawczyk ◽  
Violeta Medelienė

Following a new climate and energy plan, the European Union (EU) gives big attention to energy savings. The overall assessment of energy saving measures is very important. Thus, it is crucial to estimate in a proper way the primary energy factor, which is used in calculations of primary energy consumption from renewable energy (RE) sources in a Nearly Zero Energy Building (NZEB). The conduced studies of the literature and national regulations showed that different methods to determine energy from photovoltaic (PV) systems are used. The aim of this paper is to evaluate the primary energy factors of energy from photovoltaics and determine the average value. To achieve this aim, the data of 30 photovoltaic systems from Lithuania were analyzed. The results show a 35% diversification in the values of non-renewable primary energy factor, depending on the PV systems’ capacities, with the average on a level of 1.038.


Author(s):  
Michael Keltsch ◽  
Werner Lang ◽  
Thomas Auer

The Energy Performance of Buildings Directive 2010 calls for the Nearly Zero Energy Standard for new buildings from 2021 onwards: Buildings using “almost no energy” are powered by renewable sources or energy produced by the building itself. For residential buildings, this ambitious new standard has already been reached. But for other building types this goal is still far away. The potential of these buildings to meet a Nearly Zero Energy Standard was investigated by analyzing ten case studies representing non-residential buildings with different uses. The analysis shows that the primary characteristics common to critical building types are a dense building context with a very high degree of technical installation (such as hospital, research and laboratory buildings). The large primary energy demand of these types of buildings cannot be compensated by building and property-related energy generation including off-site renewables. If the future Nearly Zero Energy Standard were to be defined with lower requirements because of this, the state related properties of Bavaria suggest that the real potential energy savings available in at least 85% of all new buildings would be insufficiently exploited. Therefore, it would be useful to instead individualize the legal energy verification process for new buildings to distinguish critical building types such as laboratories and hospitals.


Author(s):  
N. Fumo ◽  
V. Bortone ◽  
J. C. Zambrano

The concept of Net-Zero Energy in building refers to a building which has an annual balance of energy flow at the utility meter of zero. The concept implies that the building may consume energy from an external provider at times in order to satisfy the building demands, but at other times it must produce enough on-site energy to compensate for this energy. The use of renewable energy technologies is implicit as the source of energy to compensate for any energy used from an external provider. Solar photovoltaic is a proved technology for achieving Net-Zero Energy building but economic factors has limited its broad use. The design stage of a solar photovoltaic project is critical to make a project feasible. In the design stage, the equipment sizing must be optimized in order to reduce the initial capital cost and, therefore, improve the economics of the project. For houses, which is the focus of this paper, a stand-alone solar photovoltaic system must supply the house energy demand at all times since it is not connected to the electric grid. As a means to size the system, data of solar energy availability must be used to ensure that the system will provide enough energy to satisfy the energy demand as well as provide energy to charge the batteries that will provide the energy required when the solar energy is not available. In this paper, a methodology to optimize the size of the photovoltaic array and the battery bank is proposed. The methodology accounts for Typical Meteorological Year data (TMY3) to ensure that the system, based on accepted statistical data, will be able to satisfy the energy demand at all times. An example that uses energy demand data obtained from the simulation of a house using the software EnergyGauge is used to illustrate the implementation of the methodology.


Author(s):  
Michael Keltsch ◽  
Werner Lang ◽  
Thomas Auer

The Energy Performance of Buildings Directive 2010 calls for the Nearly Zero Energy Standard for new buildings from 2021 onwards: Buildings using “almost no energy” are powered by renewable sources or energy produced by the building itself. For residential buildings, this ambitious new standard has already been reached. But for other building types this goal is still far away. The potential of these buildings to meet a Nearly Zero Energy Standard was investigated by analyzing ten case studies representing non-residential buildings with different uses. The analysis shows that the primary characteristics common to critical building types are a dense building context with a very high degree of technical installation (such as hospital, research and laboratory buildings). The large primary energy demand of these types of buildings cannot be compensated by building and property-related energy generation including off-site renewables. If the future Nearly Zero Energy Standard were to be defined with lower requirements because of this, the state related properties of Bavaria suggest that the real potential energy savings available in at least 85% of all new buildings would be insufficiently exploited. Therefore, it would be useful to instead individualize the legal energy verification process for new buildings to distinguish critical building types such as laboratories and hospitals.


2020 ◽  
pp. 174425912092301
Author(s):  
Diana D’Agostino ◽  
Filippo de’ Rossi ◽  
Concetta Marino ◽  
Francesco Minichiello ◽  
Francesco Russo

The theme of the energy requalification of historic buildings is addressed considering the Palaeontology Museum of Naples (Southern Italy). It is assessed whether, through non-invasive methods and without intervening on the building envelope, it is possible to obtain internal hygrothermal parameters suitable to allow both occupants’ thermal comfort and satisfactory conservation conditions for the archaeological finds. In addition, a relevant reduction of energy requirements and CO2 equivalent emissions is required. Dynamic energy simulations are conducted regarding both the current configuration and the various possible modifications concerning the air conditioning system; the model is calibrated by comparison with real energy consumption data. The electric and primary energy are compared for the various cases. Furthermore, the internal hygrothermal conditions for occupants’ thermal comfort and for conservation of the archaeological finds are analysed. Finally, the possibility of inserting a suitable and minimally invasive photovoltaic system is evaluated and an almost ‘Double Plus-Zero Energy Building’ is obtained.


Author(s):  
Fernando del Ama Gonzalo ◽  
Belen Moreno ◽  
Matthew Griffin ◽  
Juan Antonio Hernandez Ramos

Net-zero energy buildings (NetZEBs) are of a building typology designed to combine energy efficiency and renewable energy generation to consume only as much energy as produced onsite through renewable resources over a specified time. The successful creation of NetZEBs is crucial to combating the current climate crisis. Water flow glazing (WFG) is a key technology that will assist in achieving this goal. Several experimental facilities have been designed and constructed to collect data based on WFG technology. These experimental facilities demonstrate that the successful implementation of WFG will allow reducing heating and cooling loads, primary energy consumption, and CO2 emissions. However, a wrong WFG selection can lead to failure in NetZEBs design. The goal of this text was to assess WFG performance through key performance indicators to understand the need of other renewable energies so that the construction of NetZEBs becomes a realistic target.


2010 ◽  
pp. 115-132 ◽  
Author(s):  
S. Agibalov ◽  
A. Kokorin

Copenhagen summit results could be called a failure. This is the failure of UN climate change policy management, but definitely the first step to a new order as well. The article reviews main characteristics of climate policy paradigm shifts. Russian interests in climate change policy and main threats are analyzed. Successful development and implementation of energy savings and energy efficiency policy are necessary and would sufficiently help solving the global climate change problem.


Sign in / Sign up

Export Citation Format

Share Document