Reliable and Energy-Efficient Routing Scheme for Underwater Wireless Sensor Networks (UWSNs)

2021 ◽  
Vol 11 (4) ◽  
pp. 42-58
Author(s):  
Semab Iqbal ◽  
Israr Hussain ◽  
Zubair Sharif ◽  
Kamran Hassan Qureshi ◽  
Javeria Jabeen

Despite the fact that the ocean plays a role in everything from the air we breathe to daily weather and climate patterns, we know very little about our ocean. Underwater wireless sensor network (UWSN) is one of the options helping us to discover some domains such as natural assets and underwater resource exploration. However, the acoustic signal is the only suitable option in underwater communication in the absence of radio waves, which face a number of challenges under this environment. To overcome these issues, many routing schemes are introduced by researchers though energy consumption is still a challenge in underwater communication. To overcome the issue of rapid energy consumption, a reliable and energy-efficient routing method is introduced that avoids the redundant forwarding of data; hence, it achieves energy efficiency and eventually prolongs the network lifetime. Simulation results support the claim that the proposed scheme achieves energy efficiency along higher delivery ratio by reducing the data transmission error rate during the routing decisions.

2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Noor Zaman ◽  
Low Tang Jung ◽  
Muhammad Mehboob Yasin

Wireless Sensor Network (WSN) is known to be a highly resource constrained class of network where energy consumption is one of the prime concerns. In this research, a cross layer design methodology was adopted to design an energy efficient routing protocol entitled “Position Responsive Routing Protocol” (PRRP). PRRP is designed to minimize energy consumed in each node by (1) reducing the amount of time in which a sensor node is in an idle listening state and (2) reducing the average communication distance over the network. The performance of the proposed PRRP was critically evaluated in the context of network lifetime, throughput, and energy consumption of the network per individual basis and per data packet basis. The research results were analyzed and benchmarked against the well-known LEACH and CELRP protocols. The outcomes show a significant improvement in the WSN in terms of energy efficiency and the overall performance of WSN.


2021 ◽  
Author(s):  
R. Thiagarajan ◽  
V. Balajivijayan ◽  
R. Krishnamoorthy ◽  
I. Mohan

Abstract Underwater Wireless Sensor Network offers broad coverage of low data rate acoustic sensor networks, scalability and energy saving routing protocols. Moreover the major problem in underwater networks is energy consumption, which arises due to lower bandwidth and propagation delays. An underwater wireless sensor network frequently employs acoustic channel communications since radio signals not worked in deep water. The transmission of data packets and energy-efficient routing are constraints for the unique characteristics of underwater. The challenging issue is an efficient routing protocol for UWSNs. Routing protocols take advantage of localization sensor nodes. Many routing protocols have been proposed for sensing nodes through a localization process. Here we proposed a Novel vector-based forwarding and efficient depth-based routing protocol. The proposed novel vector-based forwarding provides robust, scalable, and energy-efficient routing. It easily transfers nodes from source to destination. It adopts the localized and distributed alternation that allows nodes to weigh transferring packets and decreases energy consumption and provides better optimal paths. Efficient depth-based routing is a stochastic model that will succeed in a high transmission loss of the acoustic channel. The simulation was used to compare the energy consumption, network lifetime in the form of depth-based routing, delivery ratio, and vector-based forwarding to prove the optimal route finding paths and data transmission propagation delay.


Author(s):  
R. PREMA ◽  
R. RANGARAJAN

Several wireless sensor network applications have to to decide the inherent discrepancy between energy efficient communication, power aware routing and the requirement to attain preferred quality of service (QoS) such as packet delivery ratio, delay and to reduce the power and energy consumption of wireless sensor nodes. In addition to that the protocols which are developed aims in providing better QoS. For addressing this challenge, we propose the Power Aware and Energy Efficient Routing Protocol (PAEERP), which attains application-specified communication delays at low energy cost by dynamically adapting transmission power and routing decisions along with incorporating a novel cryptosystem. Through extensive simulation in NS2 the results prove that the proposed PAEERP attains lesser delay with reduced power and energy consumption.


Author(s):  
Vijendra Babu D. ◽  
K. Nagi Reddy ◽  
K. Butchi Raju ◽  
A. Ratna Raju

A modern wireless sensor and its development majorly depend on distributed condition maintenance protocol. The medium access and its computing have been handled by multi hope sensor mechanism. In this investigation, WSN networks maintenance is balanced through condition-based access (CBA) protocol. The CBA is most useful for real-time 4G and 5G communication to handle internet assistance devices. The following CBA mechanism is energy efficient to increase the battery lifetime. Due to sleep mode and backup mode mechanism, this protocol maintains its energy efficiency as well as network throughput. Finally, 76% of the energy consumption and 42.8% of the speed of operation have been attained using CBI WSN protocol.


2014 ◽  
Vol 666 ◽  
pp. 322-326
Author(s):  
Yu Yang Peng ◽  
Jae Ho Choi

Energy efficiency is one of the important hot issues in wireless sensor networks. In this paper, a multi-hop scheme based on a cooperative multi-input multi-outputspatial modulation technique is proposed in order to improve energy efficiency in WSN. In this scheme, the sensor nodes are grouped into clusters in order to achieve a multi-input multi-output system; and a simple forwarding transmission scenario is considered so that the intermediate clusters only forward packets originated from the source cluster down to the sink cluster. In order to verify the performance of the proposed system, the bit energy consumption formula is derived and the optimal number of hopsis determined. By qualitative experiments, the obtained results show that the proposed scheme can deliver the data over multiple hops consuming optimal energy consumption per bit.


2021 ◽  
Author(s):  
Duraimurugan Samiayya ◽  
Avudaiammal Ramalingam

Abstract In wireless sensor network (WSN), the gateways far away from the base station (BS) uses the gateways nearer to the BS to forward the data. It causes heavy traffic to the gateways in proximity with the BS. They need to manage this heavy traffic load but it leads to additional energy consumption and reduction in network lifetime. In order to overcome these issues, loads around the gateways need to be balanced. In this paper, multi objective based spider monkey optimization (MOSMO) has been presented to balance the load and to improve the network lifetime through energy efficient routing and clustering. The objective functions such as routing fitness and clustering fitness have been considered for optimal routing and clustering. The routing fitness function is found by incorporating both the minimum distance traversed by the gateways and minimum number of the gateway hops. The clustering fitness function is the minimum fitness function of gateways. The fitness function of each gateway is computed based on both the mean load of gateways as well as the distance between gateways and BS. The performance of the proposed MOSMO based routing and clustering scheme is compared with the existing Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) based routing and clustering scheme. The QoS features such as delay, energy consumption, delivery ratio, throughput and network lifetime with various node density are analyzed. The proposed work is simulated using MATLAB. The results show that, the reduction in delay and energy consumption is about 18% and 17% respectively whereas improvement in delivery ratio, throughput and network life time is about 15%, 24% and 19% respectively when compared to the existing PSO and GWO methods.


Author(s):  
Mukhtiar Ahmed ◽  
Mazleena Salleh ◽  
M. Ibrahim Channa ◽  
Mohd Foad Rohani

Underwater Wireless Sensor Networks (UWSNs) is interesting area for researchers.To extract the information from seabed to water surface the the majority numbers of routing protocols has been introduced. The design of routing protocols faces many challenges like deployment of sensor nodes, controlling of node mobility, development of efficient route for data forwarding, prolong the battery power of the sensor nodes, and removal of void nodes from active data forwarding paths. This research article focuses the design of the Reliable Multipath Energy Efficient Routing (RMEER) which develops the efficient route between sensor nodes, and prolongs the battery life of the nodes. RMEER is a scalable and robust protocol which utilizes the powerful fixed courier nodes in order to enhance the network throughput, data delivery ratio, network lifetime and reduces the end-to-end delay. RMEER is also an energy efficient routing protocol for saving the energy level of the nodes. We have used the NS2.30 simulator with AquaSim package for performance analysis of RMEER.We observed that the simulation performance of RMEER is better than D-DBR protocol.


Author(s):  
Padmapriya N. ◽  
N. Kumaratharan ◽  
Aswini R.

A wireless sensor network (WSN) is a gathering of sensor hubs that powerfully self-sort themselves into a wireless system without the use of any previous framework. One of the serious issues in WSNs is the energy consumption, whereby the system lifetime is subject to this factor. Energy-efficient routing is viewed as the most testing errand. Sensor organizes for the most part work in perplexing and dynamic situations and directing winds up repetitive assignment to keep up as the system measure increments. This chapter portrays the structure of wireless sensor network the analysis and study of different research works identified with energy-efficient routing in wireless sensor networks. Along these lines, to beat all the routing issues, the pattern has moved to biological-based algorithms like swarm intelligence-based strategies. Ant colony optimization-based routing protocols have shown outstanding outcomes as far as execution when connected to WSN routing.


2014 ◽  
Vol 626 ◽  
pp. 20-25
Author(s):  
K. Kalaiselvi ◽  
G.R. Suresh

In wireless sensor networks Energy-efficient routing is an important issue due to the limited battery power within the network, Energy consumption is one of the important performance factors. Specifically for the election of cluster head selection and distance between the cluster head node and base station. The main objective of this proposed system is to reduce the energy consumption and prolong the network lifetime. This paper introduces a new clustering algorithm for energy efficient routing based on a cluster head selection


Sign in / Sign up

Export Citation Format

Share Document