scholarly journals 3D Modeling of the Thermal Transfer through Precast Buildings Envelopes

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3751
Author(s):  
Soukayna Berrabah ◽  
Mohamed Ould Moussa ◽  
Mohamed Bakhouya

In this paper, a finite-element-based model is being introduced and developed, using the Cast3m (CEA, Paris, France) simulation tool, to evaluate the thermo-mechanical behavior of a small-scale test bed. In fact, many studies on thermal behavior of cavities have been carried out in literature. However, none of them took into account the co-existence of all thermal phenomena (conduction, convection, internal/external radiation). The work presented in this paper presents a thermo-mechanical model, which aims to combine, in a holistic way, these phenomena. An experimental validation of the thermal model has been first carried out using an infrared camera and DS18B20 (Maxim Integrated Products, Dallas, TX, USA) numerical sensors. Results are reported and show the accuracy of the proposed model since both numerical and experimental values of heat transmittance fit together. The main objective is to evaluate heat losses through the walls, by means of heat transmittance calculation, and proposing new functional materials that will help in energy harvesting, as a perspective of this work. As for the mechanical study, it was meant to investigate the distribution of the mechanical stress towards the building envelope submitted to its own weight. Results showed that the stress is uniformly distributed on the lateral walls of the structure as well as on the floor.

Author(s):  
Hung-Wen Lin ◽  
Yu-An Lin ◽  
Wei-Keng Lin

A general method was developed to predict the condenser temperature at each power load. And a simulation program and infrared camera was used to study the flow characteristics. High density polyethylene porous material was added in the evaporator to CPL, the loop was designed on the ground with a horizontal position and scale down the whole device to the miniature size. From the experimental results, the CPL could remove heat 110W in steady state and keep the heat source temperature about 80°C. Finally, a good agreement between the simulation and experimental values has been achieved. Comparing with experiment and simulation results, the deviation values of the distributions of the condenser outlet temperature are less than 5%.


2010 ◽  
Author(s):  
Jon La Follett ◽  
John Stroud ◽  
Pat Malvoso ◽  
Joseph Lopes ◽  
Raymond Lim ◽  
...  

2009 ◽  
Vol 283-286 ◽  
pp. 183-189 ◽  
Author(s):  
Rodrigo Perito Cardoso ◽  
A.M. Maliska ◽  
C.R. Maliska

This work presents a theoretical and experimental study of nickel deposition on iron samples at relatively high pressure using a pulsed DC glow discharge. The deposition process was conducted in conditions similar to that used for plasma sintering, using the confined anode-cathode configuration. The cathode was made from nickel commercially pure and the samples were made from interstitial free steel and sintered pure iron. The samples were characterized by mass weight gain, scanning electron microscopy and energy-dispersive X-ray microanalysis. The deposition process was mathematically modeled and the model was numerically solved using a conservative finite-volume method. The experiments demonstrated that the deposition occurs at a constant rate, with the mass flux changing linearly with the cathode voltage in the range of parameters considered. The results obtained from the diffusion model applied to the sample presented good agreement with the experimental values. Concerning the gas phase, the proposed model helped us to clarify some phenomenological aspects of the process. However, further studies, principally in the area of electrical discharges, are needed to permit a complete comprehension of this process.


2021 ◽  
pp. 111342
Author(s):  
Zhenglai Shen ◽  
Adam L. Brooks ◽  
Yawen He ◽  
Som S. Shrestha ◽  
Hongyu Zhou

2005 ◽  
Vol 74 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Reese E. Jones

A Greenwood and Williamson based model for interfacial friction is presented that incorporates the presliding transition phenomenon that can significantly affect small devices. This work builds on previous similar models by developing: an analytical estimate of the transition length in terms of material and surface parameters, a general recursion formula for the case of slip in one direction with multiple reversals and constant normal loading, and a numerical method for the general three-dimensional loading case. In addition, the proposed model is developed within a plasticity-like framework and is shown to have qualitative similarities with published experimental observations. A number of model problems illustrate the response of the proposed model to various loading conditions.


A model is proposed for the ignition of quiescent multidroplet fuel mists which assumes that chemical reaction rates are infinitely fast, and that the sole criterion for successful ignition is the generation, by the spark, of an adequate concentration of fuel vapour in the ignition zone. From analysis of the relevant heat transfer and evaporation processes involved, ex­pressions are derived for the prediction of quenching distance and minimum ignition energy. Support for the model is demonstrated by a close level of agreement between theoretical predictions of minimum ignition energy and the corresponding experimental values obtained using a specially designed ignition apparatus in which ignition energies are measured for several different fuels, over wide ranges of pressure, mixture composition and mean drop size. The results show that both quenching distance and mini­mum ignition energy are strongly dependent on droplet size, and are also dependent, but to a lesser extent, on air density, equivalence ratio and fuel volatility. An expression is derived to indicate the range of drop sizes over which the proposed model is valid.


2021 ◽  
Author(s):  
Michael Haugeneder ◽  
Tobias Jonas ◽  
Dylan Reynolds ◽  
Michael Lehning ◽  
Rebecca Mott

<p>Snowmelt runoff predictions in alpine catchments are challenging because of the high spatial variability of t<span>he snow cover driven by </span>various snow accumulation and ablation processes. In spring, the coexistence of bare and snow-covered ground engages a number of processes such as the enhanced lateral advection of heat over partial snow cover, the development of internal boundary layers, and atmospheric decoupling effects due to increasing stability at the snow cover. The interdependency of atmospheric conditions, topographic settings and snow coverage remains a challenge to accurately account for these processes in snow melt models.<br>In this experimental study, we used an Infrared Camera (VarioCam) pointing at thin synthetic projection screens with negligible heat capacity. Using the surface temperature of the screen as a proxy for the air temperature, we obtained a two-dimensional instantaneous measurement. Screens were installed across the transition between snow-free and snow-covered areas. With IR-measurements taken at 10Hz, we capture<span> the dynamics of turbulent temperature fluctuations</span><span> </span>over the patchy snow cover at high spatial and temporal resolution. From this data we were able to obtain high-frequency, two-dimensional windfield estimations adjacent to the surface.</p><p>Preliminary results show the formation of a stable internal boundary layer (SIBL), which was temporally highly variable. Our data suggest that the SIBL height is very shallow and strongly sensitive to the mean near-surface wind speed. Only strong gusts were capable of penetrating through this SIBL leading to an enhanced energy input to the snow surface.</p><p>With these type of results from our experiments and further measurements this spring we aim to better understand small scale energy transfer processes over patch snow cover and it’s dependency on the atmospheric conditions, enabling to improve parameterizations of these processes in coarser-resolution snow melt models.</p>


Author(s):  
Robert Dell ◽  
Runar Unnthorsson ◽  
C. S. Wei ◽  
William Foley

In small source power generation scenarios in industrial or remote settings a viable small electrical supply for security and monitoring systems is often problematic due to the variability of the energy sources and the stability of the power generated. These small scale systems lack the advantages of a larger power grid. Therefore peak power requirements can be beyond the power generator necessitating energy storage such as batteries. The authors have developed and documented a reliable thermoelectric generator and a test bed. The generator was combined with a battery in order to meet peak power requirements beyond the unassisted range of the generator. This paper presents a test case result with the thermoelectric generator powering a complete web accessible mobile robot system. The robot system can be used for monitoring, physical manipulation of the environment, routine maintenance and in emergencies.


Processes ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 230 ◽  
Author(s):  
Lei Wang ◽  
Mengting Wang ◽  
Mingming Guo ◽  
Xingqian Ye ◽  
Tian Ding ◽  
...  

Understanding the hydration behavior of cereals during cooking is industrially important in order to optimize processing conditions. In this study, barley porridge was cooked in a sealed tin can at 100, 115, and 121 °C, respectively, and changes in water uptake and hygroscopic swelling in dehulled barley grains were measured during the cooking of canned porridge. In order to describe and better understand the hydration behaviors of barley grains during the cooking process, a three-dimensional (3D) numerical model was developed and validated. The proposed model was found to be adequate for representing the moisture absorption characteristics with a mean relative deviation modulus (P) ranging from 4.325% to 5.058%. The analysis of the 3D simulation of hygroscopic swelling was satisfactory for describing the expansion in the geometry of barley. Given that the model represented the experimental values adequately, it can be applied to the simulation and design of cooking processes of cereals grains, allowing for saving in both time and costs.


Author(s):  
Feng Jie Zheng ◽  
Fu Zheng Qu ◽  
Xue Guan Song

Reservoir-pipe-valve (RPV) systems are widely used in many industrial process. The pressure in an RPV system plays an important role in the safe operation of the system, especially during the sudden operation such as rapid valve opening/closing. To investigate the pressure especially the pressure fluctuation in an RPV system, a multidimensional and multiscale model combining the method of characteristics (MOC) and computational fluid dynamics (CFD) method is proposed. In the model, the reservoir is modeled by a zero-dimensional virtual point, the pipe is modeled by a one-dimensional MOC, and the valve is modeled by a three-dimensional CFD model. An interface model is used to connect the multidimensional and multiscale model. Based on the model, a transient simulation of the turbulent flow in an RPV system is conducted, in which not only the pressure fluctuation in the pipe but also the detailed pressure distribution in the valve are obtained. The results show that the proposed model is in good agreement with the full CFD model in both large-scale and small-scale spaces. Moreover, the proposed model is more computationally efficient than the CFD model, which provides a feasibility in the analysis of complex RPV system within an affordable computational time.


Sign in / Sign up

Export Citation Format

Share Document