scholarly journals 3D Spatial Analysis of Particulate Matter (PM10, PM2.5 and PM1.0) and Gaseous Pollutants (H2S, SO2 and VOC) in Urban Areas Surrounding a Large Heat and Power Plant

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4070
Author(s):  
Robert Cichowicz ◽  
Maciej Dobrzański

In many regions of the world, the winter period is a time of poor air quality, due primarily to the increased use of individual and district heating systems. As a consequence, the atmospheric air contains increased concentrations of both particulate matter and gaseous pollutants (as a result of “low” emissions at altitudes of up to 40 m and “high” emissions more than 40 m above ground level). In winter, the increased pollution is very often exacerbated by meteorological conditions, including air temperature, pressure, air speed, wind direction, and thermal inversion. Here, we analyze the concentrations of particulate matter (PM10, PM2.5, and PM1.0) and gaseous pollutants (H2S, SO2, and VOC) in the immediate vicinity of a large solid fuel-fired heat and power plant located in an urban agglomeration. Two locations were selected for analysis. The first was close to an air quality measurement station in the center of a multi-family housing estate. The second was the intersection of two main communication routes. To determine the impact of “low” and “high” emissions on air quality, the selected pollutants were measured at heights of between 2 and 50 m using an unmanned aerial vehicle. The results were compared with permissible standards for the concentration of pollutants. Temperature inversion was found to have a strong influence on the level of pollutants at various heights, with higher concentrations of particulate matter registered at altitudes above 40 m. The source of PM, H2S, and SO2 pollutants was confirmed to be “low emission” from local transport, industrial plant areas, and the housing estate comprising detached houses located in the vicinity of the measuring points. “High emission” was found to be responsible for the high concentrations of VOC at altitudes of more than 40 m above the intersection and in the area of the housing estate.

Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 299 ◽  
Author(s):  
Junjie Li ◽  
Xiao-Bing Li ◽  
Bai Li ◽  
Zhong-Ren Peng

In recent years, road space rationing policies have been increasingly applied as a traffic management solution to tackle congestion and traffic emission problems in big cities. Existing studies on the effect of traffic policy on air quality have mainly focused on the odd–even day traffic restriction policy or one-day-per-week restriction policy. There are few studies paying attention to the effect of nonlocal license plate restrictions on air quality in Shanghai. Restrictions toward nonlocal vehicles usually prohibit vehicles with nonlocal license plates from entering certain urban areas or using certain subsets of the road network (e.g., the elevated expressway) during specific time periods on workdays. To investigate the impact of such a policy on the residents’ exposure to pollutants, CO concentration and Air Quality Index (AQI) were compared during January and February in 2015, 2016 and 2017. Regression discontinuity (RD) was used to test the validity of nonlocal vehicle restriction on mitigating environmental pollution. Several conclusions can be made: (1) CO concentration was higher on ground-level roads on the restriction days than those in the nonrestriction days; (2) the extension of the restriction period exposed the commuters to high pollution for a longer time on the ground, which will do harm to them; and (3) the nonlocal vehicle restriction policy did play a role in improving the air quality in Shanghai when extending the evening rush period. Additionally, some suggestions are mentioned in order to improve air quality and passenger health and safety.


2019 ◽  
Vol 8 (2) ◽  
pp. 317-328 ◽  
Author(s):  
Aboubakr Benabbas ◽  
Martin Geißelbrecht ◽  
Gabriel Martin Nikol ◽  
Lukas Mahr ◽  
Daniel Nähr ◽  
...  

Abstract. The concern about air quality in urban areas and the impact of particulate matter (PM) on public health is turning into a big debate. A good solution to sensitize people to this issue is to involve them in the process of air quality monitoring. This paper presents contributions in the field of PM measurements using low-cost sensors. We show how a low-cost PM sensor can be extended to transfer data not only over Wi-Fi but also over the LoRa protocol. Then, we identify some of the correlations existing in the data through data analysis. Afterwards, we show how semantic technologies can help model and control sensor data quality in an increasing PM sensor network. We finally wrap up with a conclusion and plans for future work.


2011 ◽  
Vol 11 (3) ◽  
pp. 8665-8717 ◽  
Author(s):  
C. Reche ◽  
X. Querol ◽  
A. Alastuey ◽  
M. Viana ◽  
J. Pey ◽  
...  

Abstract. In many large cities of Europe standard air quality limit values of particulate matter (PM) are exceeded. Emissions from road traffic and biomass burning are frequently reported to be the major causes. As a consequence of these exceedances a large number of air quality plans, most of them focusing on traffic emissions reductions, have been implemented in the last decade. In spite of this implementation, a number of cities did not record a decrease of PM levels. Thus, is the efficiency of air quality plans overestimated? Or do we need a more specific metric to evaluate the impact of the above emissions on the levels of urban aerosols? This study shows the results of the interpretation of the 2009 variability of levels of PM, black carbon (BC), aerosol number concentration (N) and a number of gaseous pollutants in seven selected urban areas covering road traffic, urban background, urban-industrial, and urban-shipping environments from southern, central and northern Europe. The results showed that variations of PM and N levels do not always reflect the variation of the impact of road traffic emissions on urban aerosols. However, BC levels vary proportionally with those of traffic related gaseous pollutants, such as CO, NO2 and NO. Due to this high correlation, one may suppose that monitoring the levels of these gaseous pollutants would be enough to extrapolate exposure to traffic-derived BC levels. However, the BC/CO, BC/NO2 and BC/NO ratios vary widely among the cities studied, as a function of distance to traffic emissions, vehicle fleet composition and the influence of other emission sources such as biomass burning. Thus, levels of BC should be measured at air quality monitoring sites. During traffic rush hours, a narrow variation in the N/BC ratio was evidenced, but a wide variation of this ratio was determined for the noon period. Although in central and northern Europe N and BC levels tend to vary simultaneously, not only during the traffic rush hours but also during the whole day, in urban background stations in southern Europe maximum N levels coinciding with minimum BC levels are recorded at midday in all seasons. These N maxima recorded in southern European urban background environments are attributed to midday nucleation episodes occurring when gaseous pollutants are diluted and maximum insolation and O3 levels occur. The occurrence of SO2 peaks may also contribute to the occurrence of midday nucleation bursts in specific industrial or shipping-influenced areas, although at several central European sites similar levels of SO2 are recorded without yielding nucleation episodes. Accordingly, it is clearly evidenced that N variability in different European urban environments is not equally influenced by the same emission sources and atmospheric processes. We conclude that N variability does not always reflect the impact of road traffic on air quality, whereas BC is a more consistent tracer of such an influence. The combination of PM10 and BC monitoring in urban areas potentially constitutes a useful approach to evaluate the impact of road traffic emissions on air quality.


2011 ◽  
Vol 11 (13) ◽  
pp. 6207-6227 ◽  
Author(s):  
C. Reche ◽  
X. Querol ◽  
A. Alastuey ◽  
M. Viana ◽  
J. Pey ◽  
...  

Abstract. In many large cities of Europe standard air quality limit values of particulate matter (PM) are exceeded. Emissions from road traffic and biomass burning are frequently reported to be the major causes. As a consequence of these exceedances a large number of air quality plans, most of them focusing on traffic emissions reductions, have been implemented in the last decade. In spite of this implementation, a number of cities did not record a decrease of PM levels. Thus, is the efficiency of air quality plans overestimated? Do the road traffic emissions contribute less than expected to ambient air PM levels in urban areas? Or do we need a more specific metric to evaluate the impact of the above emissions on the levels of urban aerosols? This study shows the results of the interpretation of the 2009 variability of levels of PM, Black Carbon (BC), aerosol number concentration (N) and a number of gaseous pollutants in seven selected urban areas covering road traffic, urban background, urban-industrial, and urban-shipping environments from southern, central and northern Europe. The results showed that variations of PM and N levels do not always reflect the variation of the impact of road traffic emissions on urban aerosols. However, BC levels vary proportionally with those of traffic related gaseous pollutants, such as CO, NO2 and NO. Due to this high correlation, one may suppose that monitoring the levels of these gaseous pollutants would be enough to extrapolate exposure to traffic-derived BC levels. However, the BC/CO, BC/NO2 and BC/NO ratios vary widely among the cities studied, as a function of distance to traffic emissions, vehicle fleet composition and the influence of other emission sources such as biomass burning. Thus, levels of BC should be measured at air quality monitoring sites. During morning traffic rush hours, a narrow variation in the N/BC ratio was evidenced, but a wide variation of this ratio was determined for the noon period. Although in central and northern Europe N and BC levels tend to vary simultaneously, not only during the traffic rush hours but also during the whole day, in urban background stations in southern Europe maximum N levels coinciding with minimum BC levels are recorded at midday in all seasons. These N maxima recorded in southern European urban background environments are attributed to midday nucleation episodes occurring when gaseous pollutants are diluted and maximum insolation and O3 levels occur. The occurrence of SO2 peaks may also contribute to the occurrence of midday nucleation bursts in specific industrial or shipping-influenced areas, although at several central European sites similar levels of SO2 are recorded without yielding nucleation episodes. Accordingly, it is clearly evidenced that N variability in different European urban environments is not equally influenced by the same emission sources and atmospheric processes. We conclude that N variability does not always reflect the impact of road traffic on air quality, whereas BC is a more consistent tracer of such an influence. However, N should be measured since ultrafine particles (<100 nm) may have large impacts on human health. The combination of PM10 and BC monitoring in urban areas potentially constitutes a useful approach for air quality monitoring. BC is mostly governed by vehicle exhaust emissions, while PM10 concentrations at these sites are also governed by non-exhaust particulate emissions resuspended by traffic, by midday atmospheric dilution and by other non-traffic emissions.


Author(s):  
C. J. Stevens ◽  
J. N. B. Bell ◽  
P. Brimblecombe ◽  
C. M. Clark ◽  
N. B. Dise ◽  
...  

Although awareness that air pollution can damage vegetation dates back at least to the 1600s, the processes and mechanisms of damage were not rigorously studied until the late twentieth century. In the UK following the Industrial Revolution, urban air quality became very poor, with highly phytotoxic SO 2 and NO 2 concentrations, and remained that way until the mid-twentieth century. Since then both air quality, and our understanding of pollutants and their impacts, have greatly improved. Air pollutants remain a threat to natural and managed ecosystems. Air pollution imparts impacts through four major threats to vegetation are discussed through in a series of case studies. Gas-phase effects by the primary emissions of SO 2 and NO 2 are discussed in the context of impacts on lichens in urban areas. The effects of wet and dry deposited acidity from sulfur and nitrogen compounds are considered with a particular focus on forest decline. Ecosystem eutrophication by nitrogen deposition focuses on heathland decline in the Netherlands, and ground-level ozone at phytotoxic concentrations is discussed by considering impacts on semi-natural vegetation. We find that, although air is getting cleaner, there is much room for additional improvement, especially for the effects of eutrophication on managed and natural ecosystems. This article is part of a discussion meeting issue ‘Air quality, past present and future’.


2019 ◽  
Vol 19 (17) ◽  
pp. 11199-11212 ◽  
Author(s):  
Ana Stojiljkovic ◽  
Mari Kauhaniemi ◽  
Jaakko Kukkonen ◽  
Kaarle Kupiainen ◽  
Ari Karppinen ◽  
...  

Abstract. We have numerically evaluated how effective selected potential measures would be for reducing the impact of road dust on ambient air particulate matter (PM10). The selected measures included a reduction of the use of studded tyres on light-duty vehicles and a reduction of the use of salt or sand for traction control. We have evaluated these measures for a street canyon located in central Helsinki for four years (2007–2009 and 2014). Air quality measurements were conducted in the street canyon for two years, 2009 and 2014. Two road dust emission models, NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and FORE (Forecasting Of Road dust Emissions), were applied in combination with the Operational Street Pollution Model (OSPM), a street canyon dispersion model, to compute the street increments of PM10 (i.e. the fraction of PM10 concentration originating from traffic emissions at the street level) within the street canyon. The predicted concentrations were compared with the air quality measurements. Both road dust emission models reproduced the seasonal variability of the PM10 concentrations fairly well but under-predicted the annual mean values. It was found that the largest reductions of concentrations could potentially be achieved by reducing the fraction of vehicles that use studded tyres. For instance, a 30 % decrease in the number of vehicles using studded tyres would result in an average decrease in the non-exhaust street increment of PM10 from 10 % to 22 %, depending on the model used and the year considered. Modelled contributions of traction sand and salt to the annual mean non-exhaust street increment of PM10 ranged from 4 % to 20 % for the traction sand and from 0.1 % to 4 % for the traction salt. The results presented here can be used to support the development of optimal strategies for reducing high springtime particulate matter concentrations originating from road dust.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 62
Author(s):  
Robert Cichowicz ◽  
Maciej Dobrzański

Spatial analysis of the distribution of particulate matter PM10, PM2.5, PM1.0, and hydrogen sulfide (H2S) gas pollution was performed in the area around a university library building. The reasons for the subject matter were reports related to the perceptible odor characteristic of hydrogen sulfide and a general poor assessment of air quality by employees and students. Due to the area of analysis, it was decided to perform measurements at two heights, 10 m and 20 m above ground level, using measuring equipment attached to a DJI Matrice 600 unmanned aerial vehicle (UAV). The aim of the measurements was air quality assessment and investigate the convergence of the theory of air flow around the building with the spatial distribution of air pollutants. Considerable differences of up to 63% were observed in the concentrations of pollutants measured around the building, especially between opposite sides, depending on the direction of the wind. To explain these differences, the theory of aerodynamics was applied to visualize the probable airflow in the direction of the wind. A strong convergence was observed between the aerodynamic model and the spatial distribution of pollutants. This was evidenced by the high concentrations of dust in the areas of strong turbulence at the edges of the building and on the leeward side. The accumulation of pollutants was also clearly noticeable in these locations. A high concentration of H2S was recorded around the library building on the side of the car park. On the other hand, the air turbulence around the building dispersed the gas pollution, causing the concentration of H2S to drop on the leeward side. It was confirmed that in some analyzed areas the permissible concentration of H2S was exceeded.


2020 ◽  
Vol 4 (1) ◽  
pp. 17
Author(s):  
Saisantosh Vamshi Harsha Madiraju ◽  
Ashok Kumar

Transportation sources are a major contributor to air pollution in urban areas. The role of air quality modeling is vital in the formulation of air pollution control and management strategies. Many models have appeared in the literature to estimate near-field ground level concentrations from mobile sources moving on a highway. However, current models do not account explicitly for the effect of wind shear (magnitude) near the ground while computing the ground level concentrations near highways from mobile sources. This study presents an analytical model based on the solution of the convective-diffusion equation by incorporating the wind shear near the ground for gaseous pollutants. The model input includes emission rate, wind speed, wind direction, turbulence, and terrain features. The dispersion coefficients are based on the near field parameterization. The sensitivity of the model to compute ground level concentrations for different inputs is presented for three different downwind distances. In general, the model shows Type III sensitivity (i.e., the errors in the input will show a corresponding change in the computed ground level concentrations) for most of the input variables. However, the model equations should be re-examined for three input variables (wind velocity at the reference height and two variables related to the vertical spread of the plume) to make sure that that the model is valid for computing ground level concentrations.


2013 ◽  
Vol 13 (24) ◽  
pp. 12215-12231 ◽  
Author(s):  
Z. S. Stock ◽  
M. R. Russo ◽  
T. M. Butler ◽  
A. T. Archibald ◽  
M. G. Lawrence ◽  
...  

Abstract. We examine the effects of ozone precursor emissions from megacities on present-day air quality using the global chemistry–climate model UM-UKCA (UK Met Office Unified Model coupled to the UK Chemistry and Aerosols model). The sensitivity of megacity and regional ozone to local emissions, both from within the megacity and from surrounding regions, is important for determining air quality across many scales, which in turn is key for reducing human exposure to high levels of pollutants. We use two methods, perturbation and tagging, to quantify the impact of megacity emissions on global ozone. We also completely redistribute the anthropogenic emissions from megacities, to compare changes in local air quality going from centralised, densely populated megacities to decentralised, lower density urban areas. Focus is placed not only on how changes to megacity emissions affect regional and global NOx and O3, but also on changes to NOy deposition and to local chemical environments which are perturbed by the emission changes. The perturbation and tagging methods show broadly similar megacity impacts on total ozone, with the perturbation method underestimating the contribution partially because it perturbs the background chemical environment. The total redistribution of megacity emissions locally shifts the chemical environment towards more NOx-limited conditions in the megacities, which is more conducive to ozone production, and monthly mean surface ozone is found to increase up to 30% in megacities, depending on latitude and season. However, the displacement of emissions has little effect on the global annual ozone burden (0.12% change). Globally, megacity emissions are shown to contribute ~3% of total NOy deposition. The changes in O3, NOx and NOy deposition described here are useful for quantifying megacity impacts and for understanding the sensitivity of megacity regions to local emissions. The small global effects of the 100% redistribution carried out in this study suggest that the distribution of emissions on the local scale is unlikely to have large implications for chemistry–climate processes on the global scale.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 264 ◽  
Author(s):  
Giovanni Lonati ◽  
Federico Riva

The impact of the reduced atmospheric emissions due to the COVID-19 lockdown on ambient air quality in the Po Valley of Northern Italy was assessed for gaseous pollutants (NO2, benzene, ammonia) based on data collected at the monitoring stations distributed all over the area. Concentration data for each month of the first semester of 2020 were compared with those of the previous six years, on monthly, daily, and hourly bases, so that pre, during, and post-lockdown conditions of air quality could be separately analyzed. The results show that, as in many other areas worldwide, the Po Valley experienced better air quality during 2020 spring months for NO2 and benzene. In agreement with the reductions of nitrogen oxides and benzene emissions from road traffic, estimated to be −35% compared to the regional average, the monthly mean concentration levels for 2020 showed reductions in the −40% to −35% range compared with the previous years, but with higher reductions, close to −50%, at high-volume-traffic sites in urban areas. Conversely, NH3 ambient concentration levels, almost entirely due the emissions of the agricultural sector, did not show any relevant change, even at high-volume-traffic sites in urban areas. These results point out the important role of traffic emissions in NO2 and benzene ambient levels in the Po Valley, and confirm that this region is a rather homogeneous air basin with urban area hot-spots, the contributions of which add up to a relatively high regional background concentration level. Additionally, the relatively slow response of the air quality levels to the sudden decrease of the emissions due to the lockdown shows that this region is characterized by a weak exchange of the air masses that favors both the build-up of atmospheric pollutants and the development of secondary formation processes. Thus, air quality control strategies should aim for structural interventions intended to reduce traffic emissions at the regional scale and not only in the largest urban areas.


Sign in / Sign up

Export Citation Format

Share Document