scholarly journals The impact of air pollution on terrestrial managed and natural vegetation

Author(s):  
C. J. Stevens ◽  
J. N. B. Bell ◽  
P. Brimblecombe ◽  
C. M. Clark ◽  
N. B. Dise ◽  
...  

Although awareness that air pollution can damage vegetation dates back at least to the 1600s, the processes and mechanisms of damage were not rigorously studied until the late twentieth century. In the UK following the Industrial Revolution, urban air quality became very poor, with highly phytotoxic SO 2 and NO 2 concentrations, and remained that way until the mid-twentieth century. Since then both air quality, and our understanding of pollutants and their impacts, have greatly improved. Air pollutants remain a threat to natural and managed ecosystems. Air pollution imparts impacts through four major threats to vegetation are discussed through in a series of case studies. Gas-phase effects by the primary emissions of SO 2 and NO 2 are discussed in the context of impacts on lichens in urban areas. The effects of wet and dry deposited acidity from sulfur and nitrogen compounds are considered with a particular focus on forest decline. Ecosystem eutrophication by nitrogen deposition focuses on heathland decline in the Netherlands, and ground-level ozone at phytotoxic concentrations is discussed by considering impacts on semi-natural vegetation. We find that, although air is getting cleaner, there is much room for additional improvement, especially for the effects of eutrophication on managed and natural ecosystems. This article is part of a discussion meeting issue ‘Air quality, past present and future’.

2013 ◽  
Vol 13 (24) ◽  
pp. 12215-12231 ◽  
Author(s):  
Z. S. Stock ◽  
M. R. Russo ◽  
T. M. Butler ◽  
A. T. Archibald ◽  
M. G. Lawrence ◽  
...  

Abstract. We examine the effects of ozone precursor emissions from megacities on present-day air quality using the global chemistry–climate model UM-UKCA (UK Met Office Unified Model coupled to the UK Chemistry and Aerosols model). The sensitivity of megacity and regional ozone to local emissions, both from within the megacity and from surrounding regions, is important for determining air quality across many scales, which in turn is key for reducing human exposure to high levels of pollutants. We use two methods, perturbation and tagging, to quantify the impact of megacity emissions on global ozone. We also completely redistribute the anthropogenic emissions from megacities, to compare changes in local air quality going from centralised, densely populated megacities to decentralised, lower density urban areas. Focus is placed not only on how changes to megacity emissions affect regional and global NOx and O3, but also on changes to NOy deposition and to local chemical environments which are perturbed by the emission changes. The perturbation and tagging methods show broadly similar megacity impacts on total ozone, with the perturbation method underestimating the contribution partially because it perturbs the background chemical environment. The total redistribution of megacity emissions locally shifts the chemical environment towards more NOx-limited conditions in the megacities, which is more conducive to ozone production, and monthly mean surface ozone is found to increase up to 30% in megacities, depending on latitude and season. However, the displacement of emissions has little effect on the global annual ozone burden (0.12% change). Globally, megacity emissions are shown to contribute ~3% of total NOy deposition. The changes in O3, NOx and NOy deposition described here are useful for quantifying megacity impacts and for understanding the sensitivity of megacity regions to local emissions. The small global effects of the 100% redistribution carried out in this study suggest that the distribution of emissions on the local scale is unlikely to have large implications for chemistry–climate processes on the global scale.


Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 299 ◽  
Author(s):  
Junjie Li ◽  
Xiao-Bing Li ◽  
Bai Li ◽  
Zhong-Ren Peng

In recent years, road space rationing policies have been increasingly applied as a traffic management solution to tackle congestion and traffic emission problems in big cities. Existing studies on the effect of traffic policy on air quality have mainly focused on the odd–even day traffic restriction policy or one-day-per-week restriction policy. There are few studies paying attention to the effect of nonlocal license plate restrictions on air quality in Shanghai. Restrictions toward nonlocal vehicles usually prohibit vehicles with nonlocal license plates from entering certain urban areas or using certain subsets of the road network (e.g., the elevated expressway) during specific time periods on workdays. To investigate the impact of such a policy on the residents’ exposure to pollutants, CO concentration and Air Quality Index (AQI) were compared during January and February in 2015, 2016 and 2017. Regression discontinuity (RD) was used to test the validity of nonlocal vehicle restriction on mitigating environmental pollution. Several conclusions can be made: (1) CO concentration was higher on ground-level roads on the restriction days than those in the nonrestriction days; (2) the extension of the restriction period exposed the commuters to high pollution for a longer time on the ground, which will do harm to them; and (3) the nonlocal vehicle restriction policy did play a role in improving the air quality in Shanghai when extending the evening rush period. Additionally, some suggestions are mentioned in order to improve air quality and passenger health and safety.


Author(s):  
David Fowler ◽  
Peter Brimblecombe ◽  
John Burrows ◽  
Mathew R. Heal ◽  
Peringe Grennfelt ◽  
...  

Air pollution has been recognized as a threat to human health since the time of Hippocrates, ca 400 BC. Successive written accounts of air pollution occur in different countries through the following two millennia until measurements, from the eighteenth century onwards, show the growing scale of poor air quality in urban centres and close to industry, and the chemical characteristics of the gases and particulate matter. The industrial revolution accelerated both the magnitude of emissions of the primary pollutants and the geographical spread of contributing countries as highly polluted cities became the defining issue, culminating with the great smog of London in 1952. Europe and North America dominated emissions and suffered the majority of adverse effects until the latter decades of the twentieth century, by which time the transboundary issues of acid rain, forest decline and ground-level ozone became the main environmental and political air quality issues. As controls on emissions of sulfur and nitrogen oxides (SO 2 and NO x ) began to take effect in Europe and North America, emissions in East and South Asia grew strongly and dominated global emissions by the early years of the twenty-first century. The effects of air quality on human health had also returned to the top of the priorities by 2000 as new epidemiological evidence emerged. By this time, extensive networks of surface measurements and satellite remote sensing provided global measurements of both primary and secondary pollutants. Global emissions of SO 2 and NO x peaked, respectively, in ca 1990 and 2018 and have since declined to 2020 as a result of widespread emission controls. By contrast, with a lack of actions to abate ammonia, global emissions have continued to grow. This article is part of a discussion meeting issue ‘Air quality, past present and future’.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4070
Author(s):  
Robert Cichowicz ◽  
Maciej Dobrzański

In many regions of the world, the winter period is a time of poor air quality, due primarily to the increased use of individual and district heating systems. As a consequence, the atmospheric air contains increased concentrations of both particulate matter and gaseous pollutants (as a result of “low” emissions at altitudes of up to 40 m and “high” emissions more than 40 m above ground level). In winter, the increased pollution is very often exacerbated by meteorological conditions, including air temperature, pressure, air speed, wind direction, and thermal inversion. Here, we analyze the concentrations of particulate matter (PM10, PM2.5, and PM1.0) and gaseous pollutants (H2S, SO2, and VOC) in the immediate vicinity of a large solid fuel-fired heat and power plant located in an urban agglomeration. Two locations were selected for analysis. The first was close to an air quality measurement station in the center of a multi-family housing estate. The second was the intersection of two main communication routes. To determine the impact of “low” and “high” emissions on air quality, the selected pollutants were measured at heights of between 2 and 50 m using an unmanned aerial vehicle. The results were compared with permissible standards for the concentration of pollutants. Temperature inversion was found to have a strong influence on the level of pollutants at various heights, with higher concentrations of particulate matter registered at altitudes above 40 m. The source of PM, H2S, and SO2 pollutants was confirmed to be “low emission” from local transport, industrial plant areas, and the housing estate comprising detached houses located in the vicinity of the measuring points. “High emission” was found to be responsible for the high concentrations of VOC at altitudes of more than 40 m above the intersection and in the area of the housing estate.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 553
Author(s):  
Domenico Toscano ◽  
Fabio Murena

The Campania region covers an area of about 13,590 km2 with 5.8 million residents. The area suffers from several environmental issues due to urbanization, the presence of industries, wastewater treatment, and solid waste management concerns. Air pollution is one of the most relevant environmental troubles in the Campania region, frequently exceeding the limit values established by European directives. In this paper, airborne pollutant concentration data measured by the regional air quality network from 2003 to 2019 are collected to individuate the historical trends of nitrogen dioxide (NO2), coarse and fine particulate matter with aerodynamic diameters smaller than 10 μm (PM10) and 2.5 μm (PM2.5), and ozone (O3) through the analysis of the number of exceedances of limit values per year and the annual average concentration. Information on spatial variability and the effect of the receptor category is obtained by lumping together data belonging to the same province or category. To obtain information on the general air quality rather than on single pollutants, the European Air Quality Index (EU-AQI) is also evaluated. A special focus is dedicated to the effect of deep street canyons on air quality, since they are very common in the urban areas in Campania. Finally, the impact of air pollution from 2003 to 2019 on human health is also analyzed using the software AIRQ+.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 158 ◽  
Author(s):  
Marta G. Vivanco ◽  
Juan Luis Garrido ◽  
Fernando Martín ◽  
Mark R. Theobald ◽  
Victoria Gil ◽  
...  

During the last few decades, European legislation has driven progress in reducing air pollution in Europe through emission mitigation measures. In this paper, we use a chemistry transport model to assess the impact on ambient air quality of the measures considered for 2030 in the for the scenarios with existing (WEM2030) and additional measures (WAM2030). The study estimates a general improvement of air quality for the WAM2030 scenario, with no non-compliant air quality zones for NO2, SO2, and PM indicators. Despite an improvement for O3, the model still estimates non-compliant areas. For this pollutant, the WAM2030 scenario leads to different impacts depending on the indicator considered. Although the model estimates a reduction in maximum hourly O3 concentrations, small increases in O3 concentrations in winter and nighttime in the summer lead to increases in the annual mean in some areas and increases in other indicators (SOMO35 for health impacts and AOT40 for impacts on vegetation) in some urban areas. The results suggest that the lower NOx emissions in the WEM and WAM scenarios lead to less removal of O3 by NO titration, especially background ozone in winter and both background and locally produced ozone in summer, in areas with high NOx emissions.


2014 ◽  
Vol 14 (12) ◽  
pp. 6089-6101 ◽  
Author(s):  
Q. Zhang ◽  
B. Yuan ◽  
M. Shao ◽  
X. Wang ◽  
S. Lu ◽  
...  

Abstract. Elevated ground-level ozone (O3), reflecting atmospheric oxidative capacity, are of increasing concern. High levels of total oxidants (Ox= O3 + NO2) have been persistently observed as a feature of Beijing's air pollution. Beijing is a well-known megacity requiring the enforcement of stringent air quality controls as rapid economic growth continues. To evaluate the effect of air quality controls in recent years, ground-based on-line measurements at an urban site were conducted in summer and the variations in O3 with simultaneous changes in NOx and volatile organic compounds (VOCs) between 2005 and 2011 were analyzed. Both NOx and total VOCs in Beijing decreased over the study period, 1.4 ppbv yr−1 and 1.6 ppbv yr−1, respectively. However, VOCs reactivity, in terms of OH loss rate, showed an indistinct statistical trend due to unsteady variations from naturally emitted isoprene, though some anthropogenic species showed decreasing trends, such as pentane, benzene and toluene. Meanwhile, daytime average O3 increased rapidly at an annual rate of 2.6 ppbv yr−1, around 5% yr−1 between 2005 and 2011. Considering the influence of NO titration effect and elevated regional ozone background in the North China Plain (NCP), the main reason for such an increase in oxidants was subject to "local" photochemistry. A simplified model was used to evaluate the effect of changes in the levels of ozone precursors on ozone production. We found that between 2001 and 2006, the production rate of total oxidants, P(Ox) increased rapidly due to increased VOC levels and decreasing NO2, while from 2006 to 2011 P(Ox) remained high, though decreased slightly as a consequence of the decrease in both VOC reactivity (−5% yr−1) and NOx (−4% yr−1). Observations have shown that Beijing's efforts to control air pollution were somehow effective in cutting ozone precursors, but still left higher ground-level ozone. We surmised that it resulted from potential contributions from OVOCs and regional transport near Beijing. Therefore, Beijing needs deeper cooperation with adjacent provinces to control ozone pollution together. To impel this kind of joint prevention and control program, ground-level ozone should become a mandatory index for air quality management, and a faster reduction of VOCs, especially reactive VOCs, in urban areas, should coordinate with national NOx emission control programs.


Jurnal Galam ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 54-65
Author(s):  
Rida Yuliani ◽  
◽  
Witiyasti Imaningsih ◽  
Tri Wira Yuwati ◽  
◽  
...  

Air pollution is one of the main issues faced by urban areas. Therefore, morphological characteristic and colony coverage of lichen growing at different scale air-polluted area could become as a bioindicator of their air quality. This research aims to determine the condition of lichen in spots located at near and far from the main road (width ± 29 meter) in urban area at Banjarbaru town. This research used descriptive method with purposive sampling technique. Sample were obtained from 2 plots those were far and near the main road, each plot represented by samples from 5 different trees (densed canopy with minimum DBH at 25 cm). Lichens were taken at 50-150 cm above ground level using 20x20 cm quadrant plastic frame. Observation variables include the number and shape of colonies, color and type of thallus, and percentage of thallus cover. We determined 13 colonies from spots far from the main road (500-600 meter from main road). Lichen dominated by green to bluish color, thallus consist of crustose and foliose, and the average percentage of thallus cover was 28.01%. While from that near the main road (14-250 meter from main road), we determined 14 colonies predominantly consisted of white crustose lichens, and the average percentage of thallus cover was 10.01%. Traffic intensity showed to have significant effect on lichens community. The main difference can be seen from morphology and colony coverage. Based on this result, lichen can be used as bioindicator of air quality, especially air pollution caused by motorized vehicles. Keywords arboretum, crustose, foliose, pollution, thallus


Encyclopedia ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 519-526
Author(s):  
Gabriele Donzelli ◽  
Lorenzo Cioni ◽  
Mariagrazia Cancellieri ◽  
Agustin Llopis-Morales ◽  
María Morales-Suárez-Varela

Air pollution exposure is one of the greatest risks to health worldwide. It is estimated to be responsible for about 4.2 million deaths around the world every year owing to many serious diseases such as heart disease, stroke, acute and chronic respiratory diseases, and lung cancer. The WHO guideline limits are exceeded in several areas around the world, and it is estimated that about 90% of the world’s population is exposed to high air pollution levels, especially in low- and middle-income countries. The COVID-19 pandemic has forced governments to implement severe mobility restriction measures to limit the spread of the virus. This represented a unique opportunity to study the impact of mobility on urban air quality. Several studies which have investigated the relations between the quality of the air and such containment measures have shown the significant reduction of the main pollutants in the urban environment so to encourage the adoption of new approaches for the improvement of the quality of air in the cities. The aims of this entry are both a brief analysis and a discussion of the results presented in several papers to understand the relationships between COVID-19 containment measures and air quality in urban areas.


2017 ◽  
Vol 68 (4) ◽  
pp. 841-846
Author(s):  
Hai-Ying Liu ◽  
Daniel Dunea ◽  
Mihaela Oprea ◽  
Tom Savu ◽  
Stefania Iordache

This paper presents the approach used to develop the information chain required to reach the objectives of the EEA Grants� RokidAIR project in two Romanian cities i.e., Targoviste and Ploiesti. It describes the PM2.5 monitoring infrastructure and architecture to the web-based GIS platform, the early warning system and the decision support system, and finally, the linking of air pollution to health effects in children. In addition, it shows the analysis performance of the designed system to process the collected time series from various data sources using the benzene concentrations monitored in Ploiesti. Moreover, this paper suggests that biomarkers, mobile technologies, and Citizens� Observatories are potential perspectives to improve data coverage by the provision of near-real-time air quality maps, and provide personal exposure and health assessment results, enabling the citizens� engagement and behavioural change. This paper also addresses new fields in nature-based solutions to improve air quality, and studies on air pollution and its mental health effects in the urban areas of Romania.


Sign in / Sign up

Export Citation Format

Share Document