scholarly journals Analysis of Daily Energy Demand for Cooling in Buildings with Different Comfort Categories—Case Study

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4694
Author(s):  
Imre Csáky

Climate change has a potential impact on the number of hot and torrid days in the summer period. Due to the occupants’ comfort needs, and because of the high heat loads during the summer period, in several European countries, the energy used for air conditioning in buildings increased. With multiple environmental monitoring systems (Testo Saveris) in two similar offices, having west and east orientation of glazing, 1920 data (internal air, mean radiant temperature) related to operative temperature were collected in order to show the differences between heat loads of rooms with similar geometry in the same building. Data were measured in a 15 min interval. The diffuse and direct solar radiation had been determined for the horizontal and vertical surfaces, using the measured hourly global radiation (Debrecen, Hungary) data for the analyzed days (summer, hot, and torrid days). The local climatic results were compared with other climatic days used in different national standards. The daily energy need for cooling for different building comfort categories was also determined in the case of the representative days. The maximum daily energy need for cooling can be even 2.3 times higher for east orientation in comparison to the west orientation of the facades.

2021 ◽  
Vol 13 (4) ◽  
pp. 2118
Author(s):  
Emma Johnson ◽  
Andrius Plepys

Business models like product-service systems (PSSs) often recognise different sustainability goals and are seen as solutions for the impacts of consumption and fast fashion, but there is a lack of evidence supporting the environmental claims of such business models for clothing. The research aimed to understand if rental clothing business models such as PSSs have the environmental benefits often purported by quantifying the environmental impacts of rental formal dresses in a life-cycle assessment (LCA) in a case study in Stockholm, Sweden. The effects of varying consumer behaviour on the potential impact of a PSS vs. linear business model are explored through three functional units and 14 consumption scenarios. How users decide to engage with clothing PSSs dictates the environmental savings potential that a PSS can have, as shown in how many times consumers wear garments, how they use rental to substitute their purchasing or use needs, as well as how consumers travel to rental store locations.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Pavel Koštial ◽  
Zora Koštialová Jančíková ◽  
Robert Frischer

These days there are undeniably unique materials that, however, must also meet demanding safety requirements. In the case of vehicles, these are undoubtedly excellent fire protection characteristics. The aim of the work is to experimentally verify the proposed material compositions for long-term heat loads and the effect of thickness, the number of laminating layers (prepregs) as well as structures with different types of cores (primarily honeycomb made of Nomex paper type T722 of different densities, aluminum honeycomb and PET foam) and composite coating based on a glass-reinforced phenolic matrix. The selected materials are suitable candidates for intelligent sandwich structures, usable especially for interior cladding applications in the industry for the production of means of public transport (e.g., train units, trams, buses, hybrid vehicles).


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 156
Author(s):  
Paige Wenbin Tien ◽  
Shuangyu Wei ◽  
John Calautit

Because of extensive variations in occupancy patterns around office space environments and their use of electrical equipment, accurate occupants’ behaviour detection is valuable for reducing the building energy demand and carbon emissions. Using the collected occupancy information, building energy management system can automatically adjust the operation of heating, ventilation and air-conditioning (HVAC) systems to meet the actual demands in different conditioned spaces in real-time. Existing and commonly used ‘fixed’ schedules for HVAC systems are not sufficient and cannot adjust based on the dynamic changes in building environments. This study proposes a vision-based occupancy and equipment usage detection method based on deep learning for demand-driven control systems. A model based on region-based convolutional neural network (R-CNN) was developed, trained and deployed to a camera for real-time detection of occupancy activities and equipment usage. Experiments tests within a case study office room suggested an overall accuracy of 97.32% and 80.80%. In order to predict the energy savings that can be attained using the proposed approach, the case study building was simulated. The simulation results revealed that the heat gains could be over or under predicted when using static or fixed profiles. Based on the set conditions, the equipment and occupancy gains were 65.75% and 32.74% lower when using the deep learning approach. Overall, the study showed the capabilities of the proposed approach in detecting and recognising multiple occupants’ activities and equipment usage and providing an alternative to estimate the internal heat emissions.


2021 ◽  
Vol 11 (1) ◽  
pp. 376
Author(s):  
Giacomo Cillari ◽  
Fabio Fantozzi ◽  
Alessandro Franco

Passive solar system design is an essential asset in a zero-energy building perspective to reduce heating, cooling, lighting, and ventilation loads. The integration of passive systems in building leads to a reduction of plant operation with considerable environmental benefits. The design can be related to intrinsic and extrinsic factors that influence the final performance in a synergistic way. The aim of this paper is to provide a comprehensive view of the elements that influence passive solar systems by means of an analysis of the theoretical background and the synergistic design of various solutions available. The paper quantifies the potential impact of influencing factors on the final performance and then investigates a case study of an existing public building, analyzing the effects of the integration of different passive systems through energy simulations. General investigation has highlighted that latitude and orientation impact energy saving on average by 3–13 and 6–11 percentage points, respectively. The case study showed that almost 20% of the building energy demand can be saved by means of passive solar systems. A higher contribution is given by mixing direct and indirect solutions, as half of the heating and around 25% of the cooling energy demand can be cut off.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3877 ◽  
Author(s):  
F. Javier Batlles ◽  
Bartosz Gil ◽  
Svetlana Ushak ◽  
Jacek Kasperski ◽  
Marcos Luján ◽  
...  

An important element of a solar installation is the storage tank. When properly selected and operated, it can bring numerous benefits. The presented research relates to a project that is implemented at the Solar Energy Research Center of the University of Almeria in Spain. In order to improve the operation of the solar cooling and heating system of the Center, it was upgraded with two newly designed storage tanks filled with phase change materials (PCM). As a result of design works, commercial material S10 was selected for the accumulation of cold, and S46 for the accumulation of heat, in an amount of 85% and 15%, respectively. The article presents in detail the process of selecting the PCM material, designing the installation, experimental research, and exergy analysis. Individual tasks were carried out by research groups cooperating under the PCMSOL EUROPEAN PROJECT. Results of tests conducted on the constructed installation indicate that daily energy saving when using a solar chiller with PCM tanks amounts to 40% during the cooling season.


Sign in / Sign up

Export Citation Format

Share Document