scholarly journals Wear Resistance of Spark Ignition Engine Piston Rings in Hydrogen-Containing Environments

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4801
Author(s):  
Myroslav Kindrachuk ◽  
Dmytro Volchenko ◽  
Alexander Balitskii ◽  
Karol F. Abramek ◽  
Mykola Volchenko ◽  
...  

We describe the external and internal hydrogen iInteraction on contacting surfaces in the “cylinder–piston rings” friction coupling. Under the influence of high temperatures and pressure, the oil in the combustion chamber at a temperature up to 1473 K decomposes and forms small amounts of water. External hydrogen (H2) is subsequently formed. Hydrogen removal from the piston rings reduces the heterogeneity of the structure, residual stresses, and uneven physical and chemical properties of the near-surface layers, which reduces the stress concentration and, as a consequence, results in an improvement in the performance characteristics of the surface layers of the friction couple “cylinder-piston rings” of the spark ignition engine.

2014 ◽  
Vol 38 (5) ◽  
pp. 1421-1431 ◽  
Author(s):  
Daniela Aparecida de Oliveira ◽  
Adilson Pinheiro ◽  
Milton da Veiga

Pig slurry applied to soil at different rates may affect soil properties and the mobility of chemical compounds within the soil. The purpose of this study was to evaluate the effects of rates of pig slurry application in agricultural areas on soil physical and chemical properties and on the mobility of glyphosate through the soil profile. The study was carried out in the 12th year of an experiment with pig slurry applied at rates of 0 (control), 50, 100 and 200 m³ ha-1 yr-1 on a Latossolo Vermelho distrófico (Hapludox) soil. In the control, the quantities of P and K removed by harvested grains were replaced in the next crop cycle. Soil physical properties (bulk density, porosity, texture, and saturated hydraulic conductivity) and chemical properties (organic matter, pH, extractable P, and exchangeable K) were measured. Soil solution samples were collected at depths of 20, 40 and 80 cm using suction lysimeters, and glyphosate concentrations were measured over a 60-day period after slurry application. Soil physical and chemical properties were little affected by the pig slurry applications, but soil pH was reduced and P levels increased in the surface layers. In turn, K levels were increased in sub-surface layers. Glyphosate concentrations tended to decrease over time but were not affected by pig slurry application. The concentrations of glyphosate found in different depths show that the pratice of this application in agricultural soils has the potential for contamination of groundwater, especially when the water table is the surface and heavy rains occur immediately after application.


2015 ◽  
Vol 76 (5) ◽  
Author(s):  
Hazim Sharudin ◽  
Nik Rosli Abdullah ◽  
A. M. I. Mamat ◽  
Obed M. Ali ◽  
Rizalman Mamat

This paper reviews the utilization of lower and higher molecular weight alcohols as fuel for spark ignition engine. As an alternative fuel for spark ignition engine, alcohol is widely accepted as comparable to gasolin. It is due to its ability that can be produced from biological matter through the current available and new processes. Moreover, alcohol is also considered as fuel additive due to its physical and chemical properties compatible with the requirements of modern engines. The objective of this paper is to provide an overview of these fuels by highlighting on the fuel properties and spark ignition engine responses. The first part of this review explains the important of alcohol fuel properties related to the engine performance and emissions, and the difference of these properties for each type of alcohol. The second part discusses recent advancements in research involving lower and higher molecular weight alcohols mainly responses from spark ignition engine.


2005 ◽  
Vol 13 ◽  
pp. 746-748 ◽  
Author(s):  
Michael F. A’Hearn ◽  

AbstractThe Deep Impact mission aims at understanding the third dimension of a cometary nucleus, the physical and chemical properties as a function of depth below the surface. General wisdom holds that comets, because they are small and spend most of their lives far from the sun, hold primordial ices in their interiors. However, it is universally agreed that the surface layers have evolved, whether from cosmic rays while residing in the Oort cloud or from solar heating during previous perihelion passages. Clearly, in order to interpret surface observations and outgassing, we must understand how the surface layers differ from the interior. Deep Impact is the first mission to carry out a macroscopic experiment on a planetary body since the Apollo program dropped a lunar module on the moon and measured the seismic response.


Agropedology ◽  
2019 ◽  
Vol 30 (2) ◽  
Author(s):  
K.R. Malode ◽  
◽  
V D. Patil ◽  
S.R. Lakhe ◽  
◽  
...  

Horizon-wise soil samples (9 profiles) from Osmanabad, Latur, Beed (Drought prone zone) and Nanded, Parbhani (assured rainfall zone) from Marathwada region were collected and analyzed. The sand, silt and clay content ranged from 10.20 to 34.30, 17.90 to 32.20 and 43.70 to 59.30% respectively. The soils were slightly to moderately alkaline in reaction. The saturated hydraulic conductivity (sHC) ranged from 0.20 to 5.30 cm hr1 and CEC of soils varied from 33.30 to 67.10 cmol (p+) kg-1. Majority of surface and sub-surface layers had relatively higher soil organic carbon than underlying ones. The available N, P and K content ranged from 37.60 to 334.80, 1.0 to 27.10 and 224.90 to 583.80 kg ha-1 in soils, respectively. The DTPA-Zn found deficient in all the soils.


2006 ◽  
Vol 6 (12) ◽  
pp. 4617-4632 ◽  
Author(s):  
A. Kerkweg ◽  
J. Buchholz ◽  
L. Ganzeveld ◽  
A. Pozzer ◽  
H. Tost ◽  
...  

Abstract. We present the submodels DRYDEP and SEDI for the Modular Earth Submodel System (MESSy). Dry deposition of gases and aerosols is calculated within DRYDEP, whereas SEDI deals with aerosol particle sedimentation. Dry deposition velocities depend on the near-surface turbulence and the physical and chemical properties of the surface cover (e.g. the roughness length, soil pH or leaf stomatal exchange). The dry deposition algorithm used in DRYDEP is based on the big leaf approach and is described in detail within this Technical Note. The sedimentation submodel SEDI contains two sedimentation schemes: a simple upwind zeroth order scheme and a first order approach.


2013 ◽  
Vol 7 (4) ◽  
pp. 1139-1160 ◽  
Author(s):  
C. M. Carmagnola ◽  
F. Domine ◽  
M. Dumont ◽  
P. Wright ◽  
B. Strellis ◽  
...  

Abstract. The broadband albedo of surface snow is determined both by the near-surface profile of the physical and chemical properties of the snowpack and by the spectral and angular characteristics of the incident solar radiation. Simultaneous measurements of the physical and chemical properties of snow were carried out at Summit Camp, Greenland (72°36´ N, 38°25´ W, 3210 m a.s.l.) in May and June 2011, along with spectral albedo measurements. One of the main objectives of the field campaign was to test our ability to predict snow spectral albedo by comparing the measured albedo to the albedo calculated with a radiative transfer model, using measured snow physical and chemical properties. To achieve this goal, we made daily measurements of the snow spectral albedo in the range 350–2200 nm and recorded snow stratigraphic information down to roughly 80 cm. The snow specific surface area (SSA) was measured using the DUFISSS instrument (DUal Frequency Integrating Sphere for Snow SSA measurement, Gallet et al., 2009). Samples were also collected for chemical analyses including black carbon (BC) and dust, to evaluate the impact of light absorbing particulate matter in snow. This is one of the most comprehensive albedo-related data sets combining chemical analysis, snow physical properties and spectral albedo measurements obtained in a polar environment. The surface albedo was calculated from density, SSA, BC and dust profiles using the DISORT model (DIScrete Ordinate Radiative Transfer, Stamnes et al., 1988) and compared to the measured values. Results indicate that the energy absorbed by the snowpack through the whole spectrum considered can be inferred within 1.10%. This accuracy is only slightly better than that which can be obtained considering pure snow, meaning that the impact of impurities on the snow albedo is small at Summit. In the near infrared, minor deviations in albedo up to 0.014 can be due to the accuracy of radiation and SSA measurements and to the surface roughness, whereas deviations up to 0.05 can be explained by the spatial heterogeneity of the snowpack at small scales, the assumption of spherical snow grains made for DISORT simulations and the vertical resolution of measurements of surface layer physical properties. At 1430 and around 1800 nm the discrepancies are larger and independent of the snow properties; we propose that they are due to errors in the ice refractive index at these wavelengths. This work contributes to the development of physically based albedo schemes in detailed snowpack models, and to the improvement of retrieval algorithms for estimating snow properties from remote sensing data.


2012 ◽  
Vol 6 (6) ◽  
pp. 5119-5167 ◽  
Author(s):  
C. M. Carmagnola ◽  
F. Domine ◽  
M. Dumont ◽  
P. Wright ◽  
B. Strellis ◽  
...  

Abstract. The albedo of surface snow is determined both by the near-surface profile of the physical and chemical properties of the snowpack and by the spectral and angular characteristics of the incident solar radiation. Simultaneous measurements of the physical and chemical properties of snow were carried out at Summit Camp, Greenland (72°36´ N, 38°25´ W, 3210 m a.s.l.) in May and June 2011, along with spectral albedo measurements. One of the main objectives of the field campaign was to test our ability to predict snow albedo comparing measured snow spectral albedo to the albedo calculated with a radiative transfer model. To achieve this goal, we made daily measurements of the snow spectral albedo in the range 350–2200 nm and recorded snow stratigraphic information down to roughly 80 cm. The snow specific surface area (SSA) was measured using the DUFISSS instrument (DUal Frequency Integrating Sphere for Snow SSA measurement, Gallet et al., 2009). Samples were also collected for chemical analyses including black carbon (BC) and trace elements, to evaluate the impact of light absorbing particulate matter in snow. This is one of the most comprehensive albedo-related data sets combining chemical analysis, snow physical properties and spectral albedo measurements obtained in a polar environment. The surface albedo was calculated from density, SSA, BC and dust profiles using the DISORT model (DIScrete Ordinate Radiative Transfer, Stamnes et al., 1988) and compared to the measured values. Results indicate that the energy absorbed by the snowpack through the whole spectrum considered can be inferred within 1.35%. This accuracy is only slightly better than that which can be obtained considering pure snow, meaning that the impact of impurities on the snow albedo is small at Summit. In the visible region, the discrepancies between measured and simulated albedo are mostly due to the lack of correction of the cosine collector deviation from a true cosine response. In the near-infrared, minor deviations up to 0.014 can be due the accuracy of SSA measurements and to the surface roughness, whereas deviations up to 0.05 can be explained by the vertical resolution of measurements of surface layer physical properties. At 1430 and around 1800 nm the discrepancies are larger and independent of the snow properties; they may be due to the uncertainties in the ice refractive index at these wavelengths. This work contributes to the development of physically-based albedo schemes in detailed snowpack models, and to the improvement of retrieval algorithms for estimating snow properties from remote sensing data.


2006 ◽  
Vol 6 (4) ◽  
pp. 6853-6901 ◽  
Author(s):  
A. Kerkweg ◽  
J. Buchholz ◽  
L. Ganzeveld ◽  
A. Pozzer ◽  
H. Tost ◽  
...  

Abstract. We present the submodels DRYDEP and SEDI for the Modular Earth Submodel System (MESSy). Gas phase and aerosol dry deposition are calculated within DRYDEP, whereas SEDI deals with aerosol particle sedimentation. Dry deposition velocities depend on the near-surface turbulence and the physical and chemical properties of the surface cover (e.g. the roughness length, soil pH or leaf stomatal exchange). The dry deposition algorithm used in DRYDEP is based on the big leaf approach and is described in detail within this Technical Note. The sedimentation submodel SEDI contains two sedimentation schemes: a simple upwind zeroth order scheme and a first order approach.


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Author(s):  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Biomimetics involves investigation of structure, function, and methods of synthesis of biological composite materials. The goal is to apply this information to the design and synthesis of materials for engineering applications.Properties of engineering materials are structure sensitive through the whole spectrum of dimensions from nanometer to macro scale. The goal in designing and processing of technological materials, therefore, is to control microstructural evolution at each of these dimensions so as to achieve predictable physical and chemical properties. Control at each successive level of dimension, however, is a major challenge as is the retention of integrity between successive levels. Engineering materials are rarely fabricated to achieve more than a few of the desired properties and the synthesis techniques usually involve high temperature or low pressure conditions that are energy inefficient and environmentally damaging.In contrast to human-made materials, organisms synthesize composites whose intricate structures are more controlled at each scale and hierarchical order.


Sign in / Sign up

Export Citation Format

Share Document