scholarly journals A Review on Failure Modes of Wind Turbine Components

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5241
Author(s):  
Abdul Ghani Olabi ◽  
Tabbi Wilberforce ◽  
Khaled Elsaid ◽  
Enas Taha Sayed ◽  
Tareq Salameh ◽  
...  

To meet the increasing energy demand, renewable energy is considered the best option. Its patronage is being encouraged by both the research and industrial community. The main driving force for most renewable systems is solar energy. It is abundant and pollutant free compared to fossil products. Wind energy is also considered an abundant medium of energy generation and often goes hand in hand with solar energy. The last few decades have seen a sudden surge in wind energy compared to solar energy due to most wind energy systems being cost effective compared to solar energy. Wind turbines are often categorised as large or small depending on their application and energy generation output. Sustainable materials for construction of different parts of wind turbines are being encouraged to lower the cost of the system. The turbine blades and generators perform crucial roles in the overall operation of the turbines; hence, their material composition is very critical. Today, most turbine blades are made up of natural fiber-reinforced polymer (NFRP) as well as glass fiber-reinforced polymer (GFRP). Others are also made from wood and some metallic materials. Each of the materials introduced has specific characteristics that affect the system’s efficiency. This investigation explores the influence of these materials on turbine efficiency. Observations have shown that composites reinforced with nanomaterials have excellent mechanical characteristics. Carbon nanotubes have unique characteristics that may make them valuable in wind turbine blades in the future. It is possible to strengthen carbon nanotubes with various kinds of resins to get a variety of different characteristics. Similarly, the end-of-life treatment methods for composite materials is also presented.

2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Arun Kumar Koralagundi Matt ◽  
Shawn Strong ◽  
Tarek ElGammal ◽  
Ryoichi S. Amano

Wind turbine blades undergo fatigue and their performance depletes as time progresses due to the formation of internal cracks. Self-healing in polymers is a unique characteristic used to heal the cracks inherently as they form. In this study, a new method is demonstrated for supplying the monomer (that is quintessential for the healing process) uniformly throughout a fiber reinforced polymer composite. Commercial tubes were used to produce a vascular network for increased accessibility of the healing agent. The tube layouts were varied and their effect on the composite structure was observed. Conventional glass fiber reinforced polymer matrix composites (PMC) without microtubing were tested using dynamic mechanical analysis (DMA) to study the flexural visco–elastic behavior. The vascular network arrangement coupled with DMA data can be used to uniformly supply appropriate amount of healing agent to implement Self-healing in fiber reinforced PMC.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2933
Author(s):  
Jesus Cornelio Mendoza Mendoza ◽  
Edgar Ernesto Vera Cardenas ◽  
Roger Lewis ◽  
William Mai ◽  
Erika Osiris Avila Davila ◽  
...  

Complex engineering challenges are revealed in the wind industry; one of them is erosion at the leading edge of wind turbine blades. Water jet erosive wear tests on carbon-fiber reinforced polymer (CFRP) and glass-fiber reinforced polymer (GFRP) were performed in order to determine their resistance at the conditions tested. Vacuum Infusion Process (VIP) was used to obtain the composite materials. Eight layers of bidirectional carbon fabric (0/90°) and nine glass layers of bidirectional glass cloth were used to manufacture the plates. A water injection platform was utilized. The liquid was projected with a pressure of 150 bar on the surface of the specimens through a nozzle. The samples were located at 65 mm from the nozzle at an impact angle of 75°, with an exposure time of 10, 20 and 30 min. SEM and optical microscopy were used to observe the damage on surfaces. A 3D optical profilometer helped to determine the roughness and see the scar profiles. The results showed that the volume loss for glass fiber and carbon fiber were 10 and 19 mm3, respectively. This means that the resistance to water jet erosion in uncoated glass fiber was approximately two times lower than uncoated carbon fiber.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6750
Author(s):  
Valery Okulov ◽  
Ivan Kabardin ◽  
Dmitry Mukhin ◽  
Konstantin Stepanov ◽  
Nastasia Okulova

The review reflects physical solutions for de-icing, one of the main problems that impedes the efficient use of wind turbines for autonomous energy resources in cold regions. This topic is currently very relevant for ensuring the dynamic development of wind energy in the Arctic. The review discusses an effective anti-icing strategy for wind turbine blades, including various passive and active physical de-icing techniques using superhydrophobic coatings, thermal heaters, ultrasonic and vibration devices, operating control to determine the optimal methods and their combinations. After a brief description of the active methods, the energy consumption required for their realization is estimated. Passive methods do not involve extra costs, so the review focuses on the most promising solutions with superhydrophobic coatings. Among them, special attention is paid to plastic coatings with a lithographic method of applying micro and nanostructures. This review is of interest to researchers who develop new effective solutions for protection against icing, in particular, when choosing systems for protecting wind turbines.


2016 ◽  
Vol 7 (1) ◽  
pp. 129-140 ◽  
Author(s):  
Sarah J. Wulff ◽  
Matthew J. Butler ◽  
Warren B. Ballard

Abstract Wind energy is one of the fastest growing renewable energy sources in the United States and has the potential to reduce the use of traditional nonrenewable energy. However, there is concern for potential short- and long-term influences on wildlife populations, such as bird collisions with turbine blades, habitat loss, habitat fragmentation, and habitat avoidance. Bird flight heights are indicative of collision risks, but knowledge of their distributions is limited. Our goal was to examine the diurnal flight heights of bird species to assess which are at greatest risk of collision with wind turbine blades. During October 2008–August 2009, we estimated the flight heights of 66 bird species at a planned wind energy facility on the southern Great Plains. Flight heights were estimated by measuring angle of incline with a clinometer and ground distance with a laser rangefinder. Previous work has been limited to flight height measurements categorized to site-specific rotor swept zone (RSZ) specifications that has resulted in limited applicability to other wind turbine RSZ specifications. Our research is distinctive because it provides more resolution in flight height estimates than those categorized into bins and allows application to wind turbines with different RSZs. We found that the flight heights of six bird species varied among seasons, indicating their risk of collision changed throughout the year. Observations indicated that the average flight heights of 28 bird species were within the potential RSZ (32–124 m above ground level) at our study site and that two species exhibited mean flight heights above the RSZ. Fifteen of those species were wetland-associated species, 7 were raptor or vulture species, and 6 were listed as species of greatest conservation need by Texas Parks and Wildlife Department. We observed 14 bird species (1 vulture, 2 raptors, 7 wetland-associated species, and 4 passerines or other species) with greater than 25% of their observed flight heights within the RSZ. Our results indicate that raptors and wetland-associated species are the avian groups at greatest risk of collision with wind turbines due to their diurnal flight heights. However, the resolution of our data will allow assessment of which bird species are at greatest risk of collision for various wind turbine specifications. This information can help guide site assessment and placement for wind energy facilities across the southern Great Plains and help mitigate potential collision impacts on bird species.


Author(s):  
Abhisek Banerjee ◽  
Sukanta Roy ◽  
Prasenjit Mukherjee ◽  
Ujjwal K. Saha

Although considerable progress has already been achieved in the design of wind turbines, the available technical designs are not yet adequate to develop a reliable wind energy converter especially meant for small-scale applications. The Savonius-style wind turbine appears to be particularly promising for the small-scale applications because of its design simplicity, good starting ability, insensitivity to wind directions, relatively low operating speed, low cost and easy installation. However, its efficiency is reported to be inferior as compared to other wind turbines. Aiming for that, a number of investigations have been carried out to increase the performance of this turbine with various blade shapes. In the recent past, investigations with different blade geometries show that an elliptic-bladed turbine has the potential to harness wind energy more efficiently. In view of this, the present study attempts to assess the performance of an elliptic-bladed Savonius-style wind turbine using 2D unsteady simulations. The SST k-ω turbulence model is used to simulate the airflow over the turbine blades. The power and torque coefficients are calculated at rotating conditions, and the results obtained are validated with the wind tunnel experimental data. Both the computational and experimental studies indicate a better performance with the elliptical blades. Further, the present analysis also demonstrates improved flow characteristics of the elliptic-bladed turbine over the conventional semi-circular design.


Sign in / Sign up

Export Citation Format

Share Document