scholarly journals Palladium-Functionalized Graphene for Hydrogen Sensing Performance: Theoretical Studies

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5738
Author(s):  
Vinay Kishnani ◽  
Anshul Yadav ◽  
Kunal Mondal ◽  
Ankur Gupta

The adsorption characteristics of H2 molecules on the surface of Pd-doped and Pd-decorated graphene (G) have been investigated using density functional theory (DFT) calculations to explore the sensing capabilities of Pd-doped/decorated graphene. In this analysis, electrostatic potential, atomic charge distribution, 2D and 3D electron density contouring, and electron localization function projection, were investigated. Studies have demonstrated the sensing potential of both Pd-doped and Pd-decorated graphene to H2 molecules and have found that the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), i.e., the HOMO-LUMO gap (HLG), decreases to 0.488 eV and 0.477eV for Pd-doped and Pd-decorated graphene, respectively. When H2 is adsorbed on these structures, electrical conductivity increases for both conditions. Furthermore, chemical activity and electrical conductivity are higher for Pd-decorated G than Pd-doped G, whereas the charge transfer of Pd-doped graphene is far better than that of Pd-decorated graphene. Also, studies have shown that the adsorption energy of Pd-doped graphene (−4.3 eV) is lower than that of Pd-decorated graphene (−0.44 eV); a finding attributable to the fact that the recovery time for Pd-decorated graphene is lower compared to Pd-doped graphene. Therefore, the present analysis confirms that Pd-decorated graphene has a better H2 gas sensing platform than Pd-doped graphene and, as such, may assist the development of nanosensors in the future.

Density Functional Theoretical (DFT) studies on the biologically active oxime ether derived from 1,3-dimethyl-2,6-diphenylpiperidin-4-one has been carried out. Various quantum chemical parameters of the molecule viz. molecular geometry, Highest Occupied Molecular Orbital – Lowest Unoccupied Molecular Orbital (HOMO–LUMO) energies, Non-Linear Optical (NLO) properties, Mulliken atomic charge distribution were obtained theoretically and compared with the single crystal data. An insight into the structure and property correlation revealed the probable behavior of the molecule studied


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Iman Danaee ◽  
Paria Nikparsa ◽  
Mohammad Reza Khosravi-Nikou

Abstract In this work, the adsorption and inhibition behavior of 1,3-benzothiazol-6-ol were investigated by computational and experimental techniques for steel X80 corrosion in acidic solution. The density functional theory was carried out and quantum chemical factors like the energy gap, energy of highest occupied molecular orbital, the energy of lowest unoccupied molecular orbital, the fraction of electron transferred, and Mulliken charges have been calculated. In addition, according to quantum calculation, S atom in 1,3-benzothiazol-6-ol indicated more tendency for electrophilic attack in adsorption. The main reason for high inhibition efficiencies in very low concentrations is the planar and simplicity of inhibitor structure which leads to increasing the efficiency of adsorption by functional group especially sulfur. Electrochemical frequency modulation and potentiodynamic polarization indicated that this material has excellent inhibiting features in very low concentrations. The influence of DC trend on the explanation of electrochemical noise data was evaluated by polynomial fitting and the optimum polynomial order m = 5 was obtained. Noise resistance and the inhibition efficiency was calculated and compared in different methods. The theory of shot noise in frequency domain was used to obtain the electrochemical event charge. The corroded surface of steel in the absence and existence of thiazole compound was studied by Atomic force microscopy.


2010 ◽  
Vol 150-151 ◽  
pp. 984-987
Author(s):  
Shuai Qin Yu ◽  
Li Hua Dong ◽  
Yan Sheng Yin

The geometric structures and electronic properties of Si doped Fen (n=2-7) clusters have been systematically studied at the BPW91 level in density-functional theory (DFT). Calculated results show that an Si impurity does not change the ground-state structure of small iron clusters and prefers to occupy surface site bonding with iron atoms as many as possible. The second-order energy difference and the vertical ionization potential show that n=4 and 6 are magic numbers within the size range studied, but the maximum value occurs at n=4 for the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital(LUMO). It is found that the hybridization intensity between Si and Fe atoms is relevant to the stability of clusters.


2013 ◽  
Vol 68 (10-11) ◽  
pp. 651-658 ◽  
Author(s):  
Yang-Mei Chen ◽  
Xiao-Yu Kuang ◽  
Xiao-Wei Sheng ◽  
Huai-Qian Wang ◽  
Peng Shao ◽  
...  

Density functional calculations have been performed for the carbon monoxide molecule adsorption on AunPd+m(n+m ≤ 6) clusters. In the process of CO adsorption, small Au clusters and Pd clusters tend to be an Au atom and three Pd atoms adsorption, respectively. For the mixed Au-Pd clusters, an Au atom, a Pd atom, two atoms consisted of an Au atom and a Pd atom, two Pd atoms, and three Pd atoms adsorption structures are displayed. The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps and natural bond orbital charge population are calculated. Moreover, CO adsorption energy, CO stretching frequency, and CO bond length (upon adsorption) are also analysed in detail. The results predict that the adsorption strength of Au clusters with CO and the C-O vibration strength is enhanced and reduced after doping of Pd in the AunPdmCO+ complexes, respectively


2014 ◽  
Vol 1698 ◽  
Author(s):  
Meghana Rawal ◽  
Kerry Garrett ◽  
Andreas F. Tillack ◽  
Werner Kaminsky ◽  
Evgheni Jucov ◽  
...  

ABSTRACTWe studied the effect of a cross-conjugated bridging group (χC) on charge-transfer in a push-pull chromophore system. The hyperpolarizability of such molecules was found to be comparable to that of a fully π-conjugated molecule (πC) with the same donor and acceptor. The cross-conjugated moiety was then applied as a pendant to a fully π-conjugated chromophore containing a tricyanopyrroline acceptor (TCP). The addition of a χC moiety did not alter the intrinsic hyperpolarizability and provides an avenue for extending and aiding πC systems. The molecules were examined by X-ray diffraction (XRD), hyper-Raleigh scattering (HRS) and UV-visible (UV-vis) spectroscopy. Experimental results were compared with the predictions of density functional theory (DFT). Cross-conjugated molecules have comparable β values, relative to πC molecules, due to reduced spatial overlap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Thus, the χC architecture could facilitate independent modification of donor and acceptor strengths while minimizing unfavorable effects on electronic transitions and dipole moments.


2008 ◽  
Vol 07 (05) ◽  
pp. 1055-1069 ◽  
Author(s):  
TAPAS MANNA ◽  
SUMANTA BHATTACHARYA

The conformational stability and electronic structures of novel H 2-(1) and Zn-tetraphenylporphyrin–[60]fullerene (2) dyads, in which the [60]fullerene is directly linked to the tetrapyrrolic rings by ethynylenephenylene subunits, have been studied by ab initio and density functional theory calculations. From the investigation on frontier molecular orbitals, it was found that the lowest unoccupied molecular orbital state of these supramolecules is localized on the fullerene and that the highest occupied molecular orbital state is localized on the porphyrin moiety. Molecular electrostatic potential maps clearly demonstrate the electron transfer phenomena from the porphyrin moiety to the fullerene in dyads 1 and 2.


2021 ◽  
Author(s):  
xiaosong Xu ◽  
Renfa Zhang ◽  
Wenxin Xia ◽  
Peng Ma ◽  
Congming Ma ◽  
...  

Abstract The external electric field has a significant influence on the sensitivity of the energetic cocrystal materials. In order to find out the relationship between the external electric field and sensitivity of energetic cocrystal compounds 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/1,4-dinitroimidazole (CL-20/1,4-DNI), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/1-methyl-2,4-dinitro-1H-imidazole (CL-20/2,4-MDNI) and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/1-methyl-4,5-dinitro-1H-imidazole (CL-20/4,5-MDNI). In this work, density functional theory (DFT) at B3LYP-D3/6-311+G(d,p) and M062X-D3/ma-def2 TZVPP levels was employed to calculate the bond dissociation energies (BDEs) of selected N-NO2 trigger bonds, frontier molecular orbitals, electrostatic potentials (ESPs) and nitro group charges (QNO2) under different external electric field. The results show that as the positive electric field intensity increases, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy gap and BDEs become smaller, and the local positive ESPs becomes larger, so that the energetic cocrystals tends to have higher sensitivity. In addition, the linear fitting results show that the trigger bond length and nitro group charge changes are closely related to the external electric field strength.


2020 ◽  
Vol 32 (12) ◽  
pp. 3179-3185
Author(s):  
P.A. Suchetan ◽  
S. Naveen ◽  
N.K. Lokanath ◽  
P. Krishna Murthy ◽  
M.V. Deepa Urs

The ortho-CF3 substituent and the N-H bond are in syn-conformation in N-[2-(trifluoromethyl)phenyl]succinamic acid. In amide and acid functionalities, the carbonyl groups are directed in opposite directions to each other and their related-CH2 groups. syn-Conformation is observed for the acid functionality, where the carbonyl C=O and hydroxyl O-H bonds are directed in the same direction. Three planar fragments comprise of the molecule: aromatic ring (A), core portion -Carm-N(H)-C(=O)-C(H2)-C(H2)(B) and -C(H2)-C(=O)-OH(C). The dihedral angle between a pair of fragments being 48.6(4)º (A and B), 81.6 (4)º (B and C) and 70.5 (5)º (A and C). N-H•••O hydrogen bonds bind the molecules forming C(4) chains in the crystal, and the neighbouring anti-parallel chains are bound by O-H•••O hydrogen bonds resulting in a chair shaped ribbon of one-dimensional nature. The Hirshfeld surface study was carried out, including fingerprint plots. Studies have shown that the interactions with O•••H/H•••O (27.4%), H•••H (27.3%) and H•••F/F•••H (20.2%) substantially added to the surface. Theoretically, the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) and various global reactivity descriptors were also computed by the density functional theory (DFT/B3LYP) approach with a 6-311G(d, p) basis set in the ground state on the geometrically optimized structure in the gas phase.


2020 ◽  
pp. 2150007
Author(s):  
D. Sergeyev ◽  
N. Ashikov ◽  
N. Zhanturina

In the framework of the density functional theory and method of nonequilibrium Green functions (DFT [Formula: see text] NEGF), the electric transport properties of the model nanojunction “Graphene–Fullerene C[Formula: see text]–Graphene” were studied. The transmission spectra, the density of states, the current–voltage characteristic (CVC) and the differential conductivity of the nanojunction are determined. The appearance of a feature of the DOS nanotransition is revealed. This is due to the fact that the Lowest Unoccupied Molecular Orbital (LUMO) of C[Formula: see text] becomes closer to the Fermi level of metal substrates than its Highest Occupied Molecular Orbital (HOMO). It is shown that Coulomb stairs associated with the Coulomb blockade effect appear on the CVC of the nanotransition. The same changes are observed on the differential conductivity spectrum in the form of eight distinct peak structures arising with period [Formula: see text][Formula: see text]V. The comparison of the electric transport characteristics of single-fullerene nanodevices with various electrode materials (graphene, gold, platinum) are presented. It was found that the voltage period of Coulomb features [Formula: see text] in a nanodevice with graphene electrodes is less than in nanodevices with platinum and gold electrodes. It was revealed that the considered nanotransition has negative differential conductivity. The results obtained can be useful in calculating promising elements of single-electronics.


2020 ◽  
Vol 21 (3) ◽  
pp. 974 ◽  
Author(s):  
Kaizheng Wang ◽  
Feipeng Wang ◽  
Ziyi Lou ◽  
Qiuhuang Han ◽  
Qi Zhao ◽  
...  

The effects of C=C, ester and β-H groups on the ionization potential (IP) and electron affinity (EA) of molecules in natural ester insulation oil were investigated by density functional theory (DFT). The major contribution to the highest occupied molecular orbital (HOMO) comes from the carbon atoms adjacent to C=C. Thus, the IPs of triglycerides decrease as the number of C=C double bonds increases. The C=C in alkanes may also lower the IP. However, the β-H in triglycerides has little effect on the IP, and C=C and β-H have only a small effect on the EAs of the triglycerides because of the major contributions of atoms near the ester group in triglycerides to the lowest unoccupied molecular orbital (LUMO). This study calculated the IPs of 53 kinds of molecules in FR3, which are significantly lower compared with those of molecules in mineral oil (MO) and trimethylolpropane triester without C=C. However, the lightning impulse breakdown voltage (LI Vb) of trimethylolpropane triester is still significantly lower than that of MO at the large gap. Therefore, the transition from slow to fast streamers under low lighting impulse voltage is determined by the ester group rather than by C=C and β-H. The ester group may attract more electrons, impacting itself more compared to alkane in MO and facilitating the transition from slow to fast streamers.


Sign in / Sign up

Export Citation Format

Share Document