scholarly journals Power Enhancement of a Vertical Axis Wind Turbine Equipped with an Improved Duct

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5780
Author(s):  
Mohammad Hassan Ranjbar ◽  
Behnam Rafiei ◽  
Seyyed Abolfazl Nasrazadani ◽  
Kobra Gharali ◽  
Madjid Soltani ◽  
...  

Efforts to increase the power output of wind turbines include Diffuser Augmented Wind Turbines (DAWT) or a shroud for the rotor of a wind turbine. The selected duct has three main components: a nozzle, a diffuser, and a flange. The combined effect of these components results in enriched upstream velocity for the rotor installed in the throat of the duct. To obtain the maximum velocity in the throat of the duct, the optimum angles of the three parts have been analyzed. A code was developed to allow all the numerical steps including changing the geometries, generating the meshes, and setting up the numerical solver simultaneously. Finally, the optimum geometry of the duct has been established that allows a doubling of the flow velocity. The flow characteristics inside the duct have also been analyzed in detail. An H-Darrieus Vertical Axis Wind Turbine (VAWT) has been simulated inside the optimized duct. The results show that the power coefficient of the DAWT can be enhanced up to 2.9 times. Deep dynamic stall phenomena are captured perfectly. The duct advances the leading-edge vortex generation and delays the vortex separation.

Vertical axis wind turbines are most effective for home energy generation especially in urban environments. Wind energy creates a stand-alone energy source that is relied on any place. The main criteria for this work is the design of micro wind turbines for all kinds of applications. Design of Twisted Blade Micro-Wind Turbine system is accomplished using computer aided design with Computational Fluid Dynamics (CFD). The flow characteristics in the wind turbine blade were analyzed by varying its twist ratio. The wind turbines with vertical axis utilize the wind from any direction with no yaw mechanism. The risk of blade ejection besides catching wind from all the directions is avoided by using the helical tye vertical axis wind turbine.


2021 ◽  
Author(s):  
Moshe Zilberman ◽  
Abdelaziz Abu Sbaih ◽  
Ibrahim Hadad

Abstract Wind energy has become an important resource for the growing demand for clean energy. In 2020 wind energy provided more than 6% of the global electricity demand. It is expected to reach 7% at the end of 2021. The installation growth rate of small wind turbines, though, is relatively slow. The reasons we are interested in the small vertical axis wind turbines are their low noise, environmentally friendly, low installation cost, and capable of being rooftop-mounted. The main goal of the present study is an optimization process towards achieving the optimal cost-effective vertical wind turbine. Thirty wind turbine models were tested under the same conditions in an Azrieli 30 × 30 × 90 cm low-speed wind tunnel at 107,000 Reynolds number. The different types of models were obtained by parametric variations of five basic models, maintaining the same aspect ratio but varying the number of bucket phases, the orientation angles, and the gaps between the vanes. The best performing turbine model was made of one phase with two vanes of non-symmetric bipolynomial profiles that exhibited 0.2 power coefficient, relative to 0.16 and 0.13 that were obtained for symmetrical polynomial and the original Savonius type turbines, respectively. Free rotation, static forces and moments, and dynamic moments and power were measured for the sake of comparison and explanation for the variations in performances of different types of turbines. CFD calculations were used to understand the forces and moment behaviors of the optimized turbine.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879954
Author(s):  
Soo-Yong Cho ◽  
Sang-Kyu Choi ◽  
Jin-Gyun Kim ◽  
Chong-Hyun Cho

In order to augment the performance of vertical axis wind turbines, wind power towers have been used because they increase the frontal area. Typically, the wind power tower is installed as a circular column around a vertical axis wind turbine because the vertical axis wind turbine should be operated in an omnidirectional wind. As a result, the performance of the vertical axis wind turbine depends on the design parameters of the wind power tower. An experimental study was conducted in a wind tunnel to investigate the optimal design parameters of the wind power tower. Three different sizes of guide walls were applied to test with various wind power tower design parameters. The tested vertical axis wind turbine consisted of three blades of the NACA0018 profile and its solidity was 0.5. In order to simulate the operation in omnidirectional winds, the wind power tower was fabricated to be rotated. The performance of the vertical axis wind turbine was severely varied depending on the azimuthal location of the wind power tower. Comparison of the performance of the vertical axis wind turbine was performed based on the power coefficient obtained by averaging for the one periodic azimuth angle. The optimal design parameters were estimated using the results obtained under equal experimental conditions. When the non-dimensional inner gap was 0.3, the performance of the vertical axis wind turbine was better than any other gaps.


Author(s):  
David MacPhee ◽  
Asfaw Beyene

Blade pitch control has been extremely important for the development of Horizontal-Axis Wind Turbines (HAWTs), allowing for greater efficiency over a wider range of operational regimes when compared to rigid-bladed designs. For Vertical-Axis Wind Turbines (VAWTs), blade pitching is inherently more difficult due to a dependence of attack angle on turbine armature location, shaft speed, and wind speed. As a result, there have been very few practical pitch control schemes put forward for VAWTs, which may be a major reason why this wind turbine type enjoys a much lower market share as compared to HAWTs. To alleviate this issue, the flexible, straight-bladed vertical-axis turbine is presented, which can passively adapt its geometry to local aerodynamic loadings and serves as a low-cost blade pitch control strategy increasing efficiency and startup capabilities. Using two-dimensional fluid-structure action simulations, this novel concept is compared to an identical rigid one and is proven to be superior in terms of power coefficient due to decreased torque minima. Moreover, due to the flexible nature of the blades, the morphing turbine achieves less severe oscillatory loadings. As a result, the morphing blade design is expected to not only increase efficiency but also system longevity without additional system costs usually associated with active pitch control schemes.


2021 ◽  
Author(s):  
Hao Su ◽  
Haoran Meng ◽  
Jia Guo ◽  
Timing Qu ◽  
Liping Lei

Abstract Wind energy has attracted worldwide attention as a pollution-free and widely distributed renewable energy source. Increasing the power density by optimizing the arrangement of wind turbines has been a popular field of research in recent years. In the present work, a systematic study on the influence of array configuration on vertical axis wind turbines is made through wind tunnel experiments. Firstly, the power performance of an isolated vertical axis wind turbine at different tip speed ratios is tested as a benchmark of comparison. Multiple situations of two-turbine configurations are then tested and the results are compared with the isolated wind turbine. The power coefficient of the turbine pair increases by 34% when the turbines are 2.4 rotor diameters apart and rotate in the same direction. In the counter-rotating co-leeward case, it is demonstrated that the turbine pairs will have a positive effect on each other when they are separated by 2.1 rotor diameters to 2.4 rotor diameters. The lateral spacing between the counter-rotating co-windward turbine pair should be greater than 1.5 rotor diameters to avoid turbulence interference between the rotors.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4775
Author(s):  
Marco A. Moreno-Armendáriz ◽  
Carlos A. Duchanoy ◽  
Hiram Calvo ◽  
Eddy Ibarra-Ontiveros ◽  
Jesua S. Salcedo-Castañeda ◽  
...  

Large cities have a significant area of buildings with roofs that are not used most of the time. Vertical-axis wind turbines are suitable for this kind of on-site renewable energy generation. Since wind speeds are not high in these cities, a suitable solution to improve energy generation is to add a Wind Booster. This paper presents a methodology useful for selecting and optimizing the main components of a Wind Booster. As a case of study, we present this methodology in a Wind Booster for a Vertical Axis Wind Turbine (VAWT) that considers the wind flow’s specific behavior in a particular city. The final Wind Booster design is state of the art and makes use of Computational Fluid Dynamics (CFD) and Design of Experiments (DOE) techniques. We experimented with the conditions of Mexico City, obtaining a 35.23% increase in torque with the optimized Wind Booster configuration. The results obtained show the potential of this methodology to improve the performance of this kind of system. Moreover, since wind behavior is very different in each city, our proposal could be beneficial for researchers looking to implement the best possible wind turbine in their locality.


2021 ◽  
Vol 10 (3) ◽  
pp. 585-595
Author(s):  
Ahmad Adnan Shoukat ◽  
Adnan Aslam Noon ◽  
Muhammad Anwar ◽  
Hafiz Waqar Ahmed ◽  
Talha Irfan Khan ◽  
...  

Wind power is a significant and urging sustainable power source asset to petroleum derivatives. Wind machines, for example, H-Darrieus vertical pivot wind turbines (VAWTs) have increased much notoriety in research network throughout the most recent couple of decades because of their applications at destinations having moderately low wind speed. Be that as it may, it is noticed that such wind turbines have low effectiveness. The point of this examination is to plan rotor cutting edges which could create most extreme power yield and execution. Different plan factors, for instance, harmony length, pitch edge, rotor distance across, cutting edge length and pitch point are explored to upgrade the presentation of VAWT. Rotor cutting edges are manufactured using the NACA-0030 structure and tried in wind burrow office and contrast its outcomes and DSM 523 profile. Numerical simulations are performed to get best geometry and stream conduct for achieving greatest power. It is seen that for higher tip-speed-proportion (TSR), shorter harmony length and bigger distance across the rotor (i.e., lower robustness) yields higher effectiveness in NACA 0030. Nevertheless, for lower TSR, the more drawn out agreement length and slighter distance across rotor (i.e., higher strength) gives better implementation. The pitch point is - 2° for TSR = 3 and - 3° for TSR = 2.5. The most extreme power yield of the wind turbine is acquired for the sharp edge profile NACA 0030. Besides, instantaneous control coefficient, power coefficient (CP) is the greatest reason for azimuthal edge of 245° and least esteem for 180°.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3794
Author(s):  
Chenguang Song ◽  
Guoqing Wu ◽  
Weinan Zhu ◽  
Xudong Zhang ◽  
Jicong Zhao

This paper numerically investigates the effects of airfoil leading edge radius on the aerodynamic characteristics of H-rotor Darrieus vertical axis wind turbine (VAWT). 10 modified airfoils are generated by changing the leading edge radius of the base NACA 0015 airfoil from 1%c to 9%c, respectively. A 2D unsteady Computational Fluid Dynamics (CFD) model is established and validated with the previously published experimental data. The power, torque, and flow field characteristics of the rotors are analyzed. The results indicate that the maximum and minimum power coefficient at the optimum tip speed ratio (TSR) are obtained for the LE-5%c and LE-1%c model, respectively. The best aerodynamic characteristics are determined by the LE-5%c model below the optimum TSR and the LE-3%c model beyond the optimum TSR. The torque characteristics and pressure distribution for the single blades with different airfoil leading edge radius show an obvious difference in the upwind region and a very small difference in the downwind region. Moreover, the airfoil leading edge radius influences the strength, region, and diffusion rate of the vortices, being the main reason for the observed differences in instantaneous torque coefficient and power coefficient. The vortices of the LE-1%c model are stronger, larger, and diffuse slower than those of the LE-2%c and LE-5%c model at the optimum TSR.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6281
Author(s):  
Jia Guo ◽  
Liping Lei

Currently, vertical axis wind turbines (VAWT) are considered as an alternative technology to horizontal axis wind turbines in specific wind conditions, such as offshore farms. However, complex unsteady wake structures of VAWTs exert a significant influence on performance of wind turbines and wind farms. In the present study, instantaneous flow fields around and downstream of an innovative VAWT with inclined pitch axes are simulated by an actuator line model. Unsteady flow characteristics around the wind turbine with variations of azimuthal angles are discussed. Several fluid parameters are then evaluated on horizontal and vertical planes under conditions of various fold angles and incline angles. Results show that the total estimated wind energy in the shadow of the wind turbine with an incline angle of 30° and 150° is 4.6% higher than that with an incline angle of 90°. In this way, appropriate arrangements of wind turbines with various incline angles have the potential to obtain more power output in a wind farm.


Author(s):  
MERAD ◽  
Asmae BOUANANI ◽  
Mama BOUCHAOUR

The use of wind energy has no harmful effects on the environment. This makes it a clean energy that is a real alternative to the problem of nuclear waste management and greenhouse gas emissions. Vertical axis wind turbines have prospective advantages in the field of domestic applications, because they have proven effectual in urban areas where wind flow conditions are intermittent, omnidirectional, unsteady and turbulent. The wind cannot ensure a regular energy supply without optimising the aerodynamics of the blades. This article presents a reminder about wind energy and wind turbines, especially the VAWT type wind turbines and also gives a presentation on the aerodynamic side of VAWT by studying the geometry and aerodynamic characteristics of the blade profiles with the acting forces and also the explanation of the DMS multiple flow tube model. This work also gives the different simulation methods to optimize the behaviour of the blades from the selected NACA profiles; the analysis first goes through the design of the blades by the design and simulation software Qblade which is used to calculate also the forces on the blade and the coefficients of lift, drag and fineness. At the end of this article we have the DMS simulation of the VAWT turbines, by determining the power coefficient and the power collected by the turbine to select the wind turbine adapted to a well characterized site.


Sign in / Sign up

Export Citation Format

Share Document