scholarly journals Development and Performance Analysis of a New Self-Powered Magnetorheological Damper with Energy-Harvesting Capability

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6166
Author(s):  
Lingbo Li ◽  
Guoliang Hu ◽  
Lifan Yu ◽  
Haonan Qi

Magnetorheological (MR) dampers, used as intelligent semi-active vibration control devices to achieve low energy consumption, fast response, controllability, and other capabilities are generally installed with a variety of sensors on their exterior to ensure that the damping force can be accurately controlled. However, external sensors are often affected by external complications that reduce the reliability of the damper, and the cost of powering the damper coils in remote locations where power is not available can be significantly increased. Based on these problems, a new self-powered MR damper scheme is proposed. The proposed MR damper has both energy-harvesting capabilities and damping controllability, and greatly improves the stability and application range of the device by converting vibration energy into electrical energy to supply the excitation coil. The MR damper can drive the piston rod in a linear reciprocating motion by external excitation, which converts mechanical energy into electrical energy via a DC brushless three-phase generator after conversion by a double-linkage mechanism. At the same time, the electrical energy generated by the generator is passed into the excitation coil to change the output damping force of the damper. Meanwhile, the damping performance and energy-harvesting efficiency of the new self-powered MR damper is experimentally tested. Experimental results show the damping force of the device reaches 1040 N when the applied current is 0.6 A. The proposed self-powered MR damper has an instantaneous voltage amplitude of 1.782 V and a peak phase power of 4.428 W when the input excitation amplitude is 12.5 mm and the frequency is 3 Hz.

2020 ◽  
Vol 10 (12) ◽  
pp. 4099
Author(s):  
Quoc-Duy Bui ◽  
Quoc Hung Nguyen ◽  
Tan Tien Nguyen ◽  
Duc-Dai Mai

Magnetorheological (MR) dampers have been widely investigated and proposed for vibration mitigation systems because they possess continuous variability of damping coefficient in response to different operating conditions. In the conventional design of MR dampers, a separate controller and power supply are required, causing an increment of complexity and cost, which are not suitable for home appliances like washing machines. To solve these issues and to reuse wasted energy from vibration of washing machines, in this study, a self-powered shear-mode MR damper, which integrates MR damping and energy-harvesting technologies into a single device, is proposed. The MR damper is composed of an inner housing, on which magnetic coils are wound directly, and an outer housing for covering and creating a closed magnetic circuit of the damper. The gap between the inner housing and the moving shaft is filled with MR fluid to produce the damping force. The energy-harvesting part consists of permanent magnets fastened together on the shaft and induction coils wound directly on slots of the housing. The induced power from the induction coils is directly applied to the excitation coils of the damping part to generate a corresponding damping force against the vibration. In order to achieve optimal geometry of the self-powered MR damper, an optimization for both the damping part and the energy harvesting part of the proposed dampers are conducted based on ANSYS finite element analysis. From optimal solutions, a prototype of the proposed damper is designed in detail, manufactured, and experimentally validated.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Guoliang Hu ◽  
Yun Lu ◽  
Shuaishuai Sun ◽  
Weihua Li

A magnetorheological (MR) damper with energy harvesting ability was proposed based on electromagnetic induction (EMI) principle. The energy harvesting part was composed of a permanent magnet array and inducing coils which move vertically. This device could act as a linear power generator when the external excitation was applied, and the kinetic energy could be converted into electrical energy due to the relative linear motion between the magnets array and the inducing coils. Finite element models of both the MR damper part and the linear power generator part were built up separately to address the magnetic flux distributions, the magnetic flux densities, and the power generating efficiency using ANSYS software. The experimental tests were carried out to evaluate the damping performance and power generating efficiency. The results show that the proposed MR damper can produce approximately 750 N damping forces at the current of 0.6 A, and the energy harvesting device can generate about 1.0 V DC voltage at 0.06 m·s−1excitation.


2017 ◽  
Vol 36 (2) ◽  
pp. 177-192 ◽  
Author(s):  
Raju Ahamed ◽  
MM Rashid ◽  
MM Ferdaus ◽  
Hazlina B Yusuf

In this study, an magnetorheological (MR) damper has been designed based on its energy harvesting capability which combines the key benefits of energy generation (reusing lost energy) and magnetorheological damping (controllable damping force). The energy harvesting part has a magnet and coil arrangement to generate energy. A two-dimensional axisymmetric model of the proposed magnetorheological damper is developed in COMSOL Multiphysics where different magnetic field properties are analysed generally by finite element method. Finally, the energy harvesting capability of the proposed magnetorheological damper model is tested by a universal testing machine and observed through an oscilloscope. The maximum induced output voltage was around 0.7 V.


2016 ◽  
Vol 3 (4) ◽  
Author(s):  
Romain Monthéard ◽  
Marise Bafleur ◽  
Vincent Boitier ◽  
Xavier Dollat ◽  
Nicolas Nolhier ◽  
...  

AbstractThis paper reports for the first time the experimental demonstration of a wireless sensor node only powered by an aeroacoustic energy-harvesting device, meant to be installed on an aircraft outside skin. Aeroacoustic noise is generated on purpose to serve as a means of converting mechanical energy from high velocity airflow into electrical energy. Results related to the physical characterization of the energy conversion process are presented. The proposed aeroacoustic transducer prototype, consisting in a rectangular cavity fitted with a piezoelectric membrane, is shown to deliver up to 2 mW AC power under Mach 0.5 airflow. Optimized power management electronics has been designed to interface with the transducer, including a self-powered Synchronized Switch Harvesting on Inductor (SSHI) interface circuit and an efficient buck-boost DC/DC converter. The design of micropower auxiliary circuits adds functionality while preserving high efficiency. This circuit stores energy in supercapacitors and is able to deliver a net output DC power close to 1 mW. A fully autonomous system has been implemented and tested, successfully demonstrating aeroacoustic power generation by supplying a battery-free wireless datalogger in conditions representative of an actual flight.


Author(s):  
Jiajia Zheng ◽  
Yancheng Li ◽  
Jiong Wang

This paper presents the design and multi-physics optimization of a novel multi-coil magnetorheological (MR) damper with a variable resistance gap (VRG-MMD). Enabling four electromagnetic coils (EMs) with individual exciting currents, a simplified magnetic equivalent circuit was presented and the magnetic flux generated by each voltage source passing through each active gap was calculated as vector operations. To design the optimal geometry of the VRG-MMD, the multi-physics optimization problem including electromagnetics and fluid dynamics has been formulated as a multi-objective function with weighting ratios among total damping force, dynamic range, and inductive time constant. Based on the selected design variables (DVs), six cases with different weighting ratios were optimized using Bound Optimization BY Quadratic Approximation (BOBYQA) technique. Finally, the vibration performance of the optimal VRG-MMD subjected to sinusoidal and triangle displacement excitations was compared to that of the typical multi-coil MR damper.


Author(s):  
Chao Chen ◽  
Yu Shing Chan ◽  
Li Zou ◽  
Wei-Hsin Liao

Dampers are the parts of suspensions which improve the ride comfort and the safety of vehicles including motorcycles. Magnetorheological dampers are very attractive for motorcycle suspensions, because of their controllable properties and their fast responses. Considerable energy is wasted owing to the energy dissipation by dampers encountering road irregularities and accelerating processes during everyday use of motorcycles. In addition, the current magnetorheological suspension systems depend on the power supply of batteries. Therefore, in this paper, a self-powered magnetorheological damper for motorcycle suspensions is proposed and implemented for the first time. It can convert the wasted mechanical energy into useful electrical energy to power itself. There are great merits in this such as energy saving, independence of extra batteries and less maintenance in comparison with conventional magnetorheological suspension systems, while keeping controllable performances. A customized prototype of the self-powered magnetorheological damper that is compatible with a motorcycle is developed and actually implemented in a motorcycle. Modelling for the self-powered magnetorheological damper is developed and validated by laboratory testing. Laboratory testing showed that the self-powered feature works well to generate the electrical power and to vary the magnetorheological damping force. Preliminary system-level testing showed that a self-powered magnetorheological suspension results in a better ride comfort, compared with that of a magnetorheological suspension without power generation. The results showed that implementing self-powered magnetorheological dampers in motorcycle suspensions is feasible and beneficial.


2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


2021 ◽  
pp. 107754632110388
Author(s):  
Hongwei Lu ◽  
Zhifei Zhang ◽  
Yansong He ◽  
Zhi Li ◽  
Jujiang Xie ◽  
...  

The realization of the desired damping characteristics based on magnetorheological (MR) dampers is important for semi-active control and useful for the matching process of suspension damper. To reduce the cost of the control system and improve the output accuracy of the desired damping force, this study proposes an open-loop control method featuring an accurate inverse model of the MR damper and a tripolar current driver. The reversible sigmoid model is used to accurately and quickly calculate the desired current. Furthermore, the change characteristic of the desired current is analyzed qualitatively and quantitatively, which shows that the desired current needs to change suddenly to make the actual damping force velocity curve quickly approach the desired one. To meet the demand of the desired current, a tripolar current driver controlled by an improved PI control algorithm is proposed, which is with fast response and low noise. Finally, the bench test verifies that the control system can achieve different desired damping characteristics well, and the inherent error in this process is explained through the gap between the available damping force area and the desired damping characteristic curve and the crossover phenomenon of the dynamic characteristic curves of the MR damper.


Sign in / Sign up

Export Citation Format

Share Document