scholarly journals Solar Irradiation Evaluation through GIS Analysis Based on Grid Resolution and a Mathematical Model: A Case Study in Northeast Mexico

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6427
Author(s):  
Fausto André Valenzuela-Domínguez ◽  
Luis Alfonso Santa Cruz ◽  
Enrique A. Enríquez-Velásquez ◽  
Luis C. Félix-Herrán ◽  
Victor H. Benitez ◽  
...  

The estimation of the solar resource on certain surfaces of the planet is a key factor in deciding where to establish solar energy collection systems. This research uses a mathematical model based on easy-access geographic and meteorological information to calculate total solar radiation at ground surface. This information is used to create a GIS analysis of the State of Nuevo León in Mexico and identify solar energy opportunities in the territory. The analyzed area was divided into a grid and the coordinates of each corner are used to feed the mathematical model. The obtained results were validated with statistical analyses and satellite-based estimations from the National Aeronautics and Space Administration (NASA). The applied approach and the results may be replicated to estimate solar radiation in other regions of the planet without requiring readings from on-site meteorological stations and therefore reducing the cost of decision-making regarding where to place the solar energy collection equipment.

2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Orhan Ekren

Characteristics of site-specific solar irradiation is required to optimize a solar energy system. If no tracking system is used, the amount of electricity or heat produced by solar energy depends on the total solar radiation on a tilted surface. Although pyranometer measures direct plus diffuse solar radiation on a horizontal surface, there are many locations where diffuse radiation is not measured. Also, diffuse radiation is necessary to determine the total radiation on a tilted surface. Therefore, in this study, new correlations for diffuse solar radiation is proposed as a function of atmospheric parameters for Urla (Izmir, Turkey). After applying the statistical procedure on the measured data, seven new correlations are proposed for the ratio of hourly average diffuse and total radiation. Also, the ratio of monthly average daily diffuse and total radiation for this region is proposed.


2019 ◽  
Vol 11 (22) ◽  
pp. 6443 ◽  
Author(s):  
Hailu ◽  
Fung

We present a study conducted to obtain optimum tilt angle and orientation of a solar panel for the collection of maximum solar irradiation. The optimum tilt angle and orientation were determined using isotropic and anisotropic diffuse sky radiation models (isotropic and anisotropic models). The four isotropic models giving varying optimum tilt angles in the range of 37 to 44°. On the other hand, results of the four anisotropic models were more consistent, with optimum tilt angles ranging between 46–47°. Both types of models indicated that the collector tilt should be changed four times a year to receive more solar radiation. The results also indicate that the solar panel should be installed with orientation west or east of due south with a flatter tilt angle. A 15° change in orientation west or east of due south results in less than 1% reduction of the total solar radiation received. For a given optimum tilt angle, the effect of photovoltaic/thermal (PV/T) orientation west or east of due south on the outlet temperature was determined using a one-dimensional steady state heat transfer model. It was found that there is less than 1.5% decrease in outlet temperature for a PV/T panel oriented up to 15° east or west of due south from March to December. This result indicates that existing roofs with orientations angles up to 15° east or west of due south can be retrofitted with a PV/T system without changing the roof shape.


1960 ◽  
Vol 41 (8) ◽  
pp. 403-405 ◽  
Author(s):  
T. L. Noffsinger ◽  
F. K. Nunns

The proportion of the incident solar energy used in the evapotranspiration process is a measure of the water requirement of plants. It has been found that in Hawaii approximately 60 per cent of the insolation is used in evapotranspiration during a 12-mo period of alfalfa production. Monthly water-requirement estimates were made from the empirical equationwhere W = water requirement in inches per month, and S = solar radiation in calories per square centimeter per month.


2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 471-482 ◽  
Author(s):  
Velimir Stefanovic ◽  
Sasa Pavlovic ◽  
Marko Ilic ◽  
Nenad Apostolovic ◽  
Dragan Kustrimovic

Solar energy may be practically utilized directly through transformation into heat, electrical or chemical energy. A physical and mathematical model is presented, as well as a numerical procedure for predicting thermal performances of the P2CC solar concentrator. The demonstrated prototype has the reception angle of 110? at concentration ratio CR = 1.38, with the significant reception of diffuse radiation. The solar collector P2CC is designed for the area of middle temperature conversion of solar radiation into heat. The working fluid is water with laminar flow through a copper pipe surrounded by an evacuated glass layer. Based on the physical model, a mathematical model is introduced, which consists of energy balance equations for four collector components. In this paper, water temperatures in flow directions are numerically predicted, as well as temperatures of relevant P2CC collector components for various values of input temperatures and mass flow rates of the working fluid, and also for various values of direct sunlight radiation and for different collector lengths. The device which is used to transform solar energy to heat is referred to as solar collector. This paper gives numerical estimated changes of temperature in the direction of fluid flow for different flow rates, different solar radiation intensity and different inlet fluid temperatures. The increase in fluid flow reduces output temperature, while the increase in solar radiation intensity and inlet water temperature increases output temperature of water. Furthermore, the dependence on fluid output temperature is determined, along with the current efficiency by the number of nodes in the numerical calculation.


1996 ◽  
Vol 118 (1) ◽  
pp. 58-63 ◽  
Author(s):  
A. Panek ◽  
Y. Lee ◽  
H. Tanaka

The global (or total) and diffuse solar irradiation data are not always available in many areas of the world and they have to be estimated using some sort of empirical models. This paper describes how the sequence of hourly irradiation data can be simulated using some statistical parameters of the global solar radiation intensity such as the monthly average and variance of its daily maxima and autocorrelation time constant. The results of this simulation are compared with the measured data for two different locations, Ottawa, Canada and Warsaw, Poland (these two locations are chosen because of easy access to the radiation data). The comparison shows an acceptable level of agreement between the simulated and measured results.


1970 ◽  
Vol 8 (3) ◽  
pp. 189-197 ◽  
Author(s):  
Khem N Pondyal ◽  
Binod K Bhattarai ◽  
Balkrishna Sapkota ◽  
Berit Kjeldstad

The intensity of solar radiation available at the horizontal surface are measured by a CMP6 Pyranometer in Biratnagar (26.45°N, 87.27°E), Pokhara (28.22°N, 83.32°E), Kathmandu (27.72°N, 85.32°E ) and Lukla (26.69°N,86.73°E), which are 72m, 800m, 1350m, and 2850m, above from the sea level. This paper compares the seasonal and altitude variations of total solar radiation measured at above mentioned sites. The maximum total solar radiation of about 704.51 W/m2, 815.97 W/m2 777.27 W/m2 and 914.03 W/m2, are observed in Biratnagar, Pokhara, Kathmandu, and Lukla respectively. Solar radiation available in any location is affected by topography and pollution. It is found that the more solar energy is available during spring than in summer in Lukla. The solar radiation is observed higher in Pokhara than in Kathmandu. It might be due to absorption of solar energy by air pollutants which are higher in Kathmandu as compared to Pokhara.In addition we also discussed the diurnal variation of measured and calculated data of solar radiation on clear sky day. The annual average solar energy measuring 4.95, 5.44, 5.19 and 4.61 kWh/m2/day is found in Biratnagar, Pokhara Kathmandu and Lukla respectively. DOI: http://dx.doi.org/10.3126/jie.v8i3.5944 JIE 2011; 8(3): 189-197


2022 ◽  
Vol 14 (2) ◽  
pp. 626
Author(s):  
Victoria Stack ◽  
Lana L. Narine

Achieving sustainability through solar energy has become an increasingly accessible option in the United States (US). Nationwide, universities are at the forefront of energy efficiency and renewable generation goals. The aim of this study was to determine the suitability for the installation of photovoltaic (PV) systems based on their solar potential and corresponding electricity generation potential on a southern US university campus. Using Auburn University located in the southern US as a case study, freely available geospatial data were utilized, and geographic information system (GIS) approaches were applied to characterize solar potential across the 1875-acre campus. Airborne light detection and ranging (lidar) point clouds were processed to extract a digital surface model (DSM), from which slope and aspect were derived. The area and total solar radiation of campus buildings were calculated, and suitable buildings were then determined based on slope, aspect, and total solar radiation. Results highlighted that of 443 buildings, 323 were fit for solar arrays, and these selected rooftops can produce 27,068,555 kWh annually. This study demonstrated that Auburn University could benefit from rooftop solar arrays, and the proposed arrays would account for approximately 21.07% of annual electricity requirement by buildings, equivalent to 14.43% of total campus electricity for all operations. Given increasing open and free access to high-resolution lidar data across the US, methods from this study are adaptable to institutions nationwide, for the development of a comprehensive assessment of solar potential, toward meeting campus energy goals.


2021 ◽  
Vol 2135 (1) ◽  
pp. 012005
Author(s):  
Gloria MarinaGloria Marina Bautista-Rodríguez ◽  
César Alexander Chacón-Cardona

Abstract The current energy demand increases every day and the deficit of electricity generation in Colombia due to technical aspects such as the lack of generation infrastructure, cost overruns in the construction projects of new plants and environmental variability as a consequence of climate change, entail a high risk of energy rationing; for this reason some of the users, whether industrial or residential, have decided to seek multiple alternatives to reduce the costs of their billing in interconnected areas and even supply their energy needs. Among these alternatives is found solar energy in its thermal and photovoltaic use, a resource that must be characterized in order to determine the technical and budgetary aspects involved in the implementation of profitable energy generation projects. This article seeks to provide technical tools for the design and implementation of generation projects based on solar energy, providing physical-mathematical approach based in the classical Angström-Prescott model that allow engineers and researchers to model the global solar radiation on the Earth’s surface in order to maximize the use of this resource in a specific geographical location. Although there are different ways to characterize the solar resource on the earth’s surface, this paper presents a review study focused on the most important global solar radiation estimation models present in the literature.


2021 ◽  
Vol 14 (7) ◽  
Author(s):  
Sylwia Wciślik ◽  
Dagmara Kotrys-Działak

AbstractNowadays, one of the basic requirements for thermally upgraded buildings involves limitation in CO2 emission even by over 90%. To fulfil these criteria, it is necessary to use alternative energy sources and photovoltaics constitutes a reasonable option for this. This paper addresses an analysis of the efficiency and profitability of a photovoltaic system located in the geometric center of Europe-Poland, where the intensity of solar irradiation is not very high compared to other European countries. The difference of total solar radiation density between Poland and Malta is 49.2%, from analysis based on SolarGIS base. The PV Lighthouse calculator was used for global power density and photon current examination for a Polish city and locations of the highest and the lowest solar radiation values, Malta and Finland, respectively. This case study concerns a thermally upgraded building; a gas boiler was replaced by a heat pump supported by an off-grid PV system. To achieve a reduction in CO2 emission of 90%, it is necessary to install 182 PV cells, which generates high investment costs. An investment is entirely profitable with 70% of funding with Simple Pay Back Time, SPBT~7 years although Net Present Value, NPV>0; Internal Rate of Return, IRR=10.6%.


Sign in / Sign up

Export Citation Format

Share Document