Hybrid Wind and Solar Photovoltaic Generation with Energy Storage Systems: A Systematic Literature Review and Contributions to Technical and Economic Regulations

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6521
Author(s):  
Gabriel Nasser Doyle de Doile ◽  
Paulo Rotella Junior ◽  
Luiz Célio Souza Rocha ◽  
Ivan Bolis ◽  
Karel Janda ◽  
...  

The operation of electrical systems is becoming more difficult due to the intermittent and seasonal characteristics of wind and solar energy. Such operational challenges can be minimized by the incorporation of energy storage systems, which play an important role in improving the stability and reliability of the grid. The economic viability of hybrid power plants with energy storage systems can be improved if regulations enable the remuneration of the various ancillary services that they can provide. Thus, the aim of this study is to provide a literature review regarding the economic feasibility of hybrid wind and solar photovoltaic generation with energy storage systems and its legal and regulatory aspects. Observing the global tendency, new studies should address the technical and economic feasibility of hybrid wind and solar photovoltaic generation in conjunction with, at least, one kind of energy storage system. In addition, it is very important to take into account the regulatory barriers and propose solutions to remove them. It was observed that although regulatory aspects can influence the economic feasibility of hybrid projects, little is known about this relationship among regulatory frameworks. The findings presented in this article are important not only for Brazil, but also for other countries that do not have regulations in force to support the use of energy storage systems in hybrid systems.

2019 ◽  
Vol 11 (1) ◽  
pp. 186 ◽  
Author(s):  
Byuk-Keun Jo ◽  
Seungmin Jung ◽  
Gilsoo Jang

Energy storage systems are crucial in dealing with challenges from the high-level penetration of renewable energy, which has inherently intermittent characteristics. For this reason, various incentive schemes improving the economic profitability of energy storage systems are underway in many countries with an aim to expand the participation rate. The electricity charge discount program, which was introduced in 2015 in Korea, is one of the policies meant to support the economic feasibility of demand-side energy storage systems. This paper quantitatively evaluated the impact of the electricity charge discount program on the economic feasibility of behind-the-meter energy storage systems. In this work, we first summarized how electricity customers can benefit from behind-the-meter energy storage systems. In addition, we represented details of the structure that make up the electricity charge discount program, i.e., how the electricity charge is discounted through the discount scheme. An optimization problem that establishes a charge and discharge schedule of an energy storage system to minimize each consumer’s electricity expenditure was defined and formulated as well. The case study results indicated that the electricity charge discount program has improved the profitability of behind-the-meter energy storage systems, and this improved profitability led to investment in behind-the-meter energy storage systems in Korea. As a result of the electricity charge discount program, Korea’s domestic demand side energy storage system market size, which was only 27 billion dollars in 2015 in Korea, has grown to 825 billion dollars in 2018.


Author(s):  
Sammy Houssainy ◽  
Reza Baghaei Lakeh ◽  
H. Pirouz Kavehpour

Human activity is overloading our atmosphere with carbon dioxide and other global warming emissions. These emissions trap heat, increase the planet’s temperature, and create significant health, environmental, and climate issues. Electricity production accounts for more than one-third of U.S. global warming emissions, with the majority generated by coal-fired power plants. These plants produce approximately 25 percent of total U.S. global warming emissions. In contrast, most renewable energy sources produce little to no global warming emissions. Unfortunately, generated electricity from renewable sources rarely provides immediate response to electrical demands, as the sources of generation do not deliver a regular supply easily adjustable to consumption needs. This has led to the emergence of storage as a crucial element in the management of energy, allowing energy to be released into the grid during peak hours and meet electrical demands. Compressed air energy storage can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. Most compressed air energy storage systems run at very high pressures, which possess inherent problems such as equipment failure, high cost, and inefficiency. This research aims to illustrate the potential of compressed air energy storage systems by illustrating two different discharge configurations and outlining key variables, which have a major impact on the performance of the storage system. Storage efficiency is a key factor to making renewable sources an independent form of sustainable energy. In this paper, a comprehensive thermodynamic analysis of a compressed air energy storage system is presented. Specifically, a detailed study of the first law of thermodynamics of the entire system is presented followed by a thorough analysis of the second law of thermodynamics of the complete system. Details of both discharge and charge cycles of the storage system are presented. The first and second law based efficiencies of the system are also presented along with parametric studies, which demonstrates the effects of various thermodynamic cycle variables on the total round-trip efficiency of compressed air energy storage systems.


2018 ◽  
Vol 31 (1) ◽  
pp. 155-175 ◽  
Author(s):  
Antonio Gagliano ◽  
Francesco Nocera ◽  
Giuseppe Tina

Currently, the need to address the issues arising from the uncontrolled growth of photovoltaic installations, such as intermittence and unpredictability of the generation that cause loss of balance in the grid, becomes unavoidable. Promising solutions for minimizing grid injection are the combination of photovoltaic generation with electricity energy storage and load management, the latter commonly known as Demand Side Management. These strategies together with incentives for self-consumption or energy independence from the network will allow facilitating the integration of the always-increasing generation of renewable energy. In Europe, the usage of residential energy grid-interactive energy storage systems for buffering of surplus photovoltaic generation is becoming a field of growing interest and market activity, as a consequence of the less attractive photovoltaic feed-in-tariffs in the near future and incentives to promote self-consumption. This study aims to evaluate the energy exchange with the grid and the rate of self-consumption of combined photovoltaic–electricity energy storage systems dedicated to residential and small commercial prosumers. More specifically, several combinations of sizes of photovoltaic plant, annual household consumptions and electricity energy storage capacity were evaluated. This analysis aims to identify which arrangement among photovoltaic power, electricity consumption and battery capacity allows reaching the highest ratio of self-sufficiency and consequently minimizing the energy exchanged with the grid. Moreover, the financial analysis of the photovoltaic–electricity energy storage system has been performed for verifying the economic viability of the photovoltaic–electricity energy storage systems under the Italian current market and economic circumstances.


Inorganics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 30 ◽  
Author(s):  
Claudio Corgnale

A comprehensive techno-economic analysis of destabilized Li hydrides, used as thermal energy storage systems in concentrating solar power plants, is presented and discussed. Two systems, operating at temperatures on the order of 550–650 °C, are selected as thermal energy storage units for steam power plants, namely the Si-destabilized Li hydride (LiSi) and the Al-destabilized Li hydride (LiAl). Two thermal energy storage systems, operating at temperatures on the order of 700–750 °C, are selected for integration in supercritical CO2 power plants, namely the Si-destabilized Li hydride (LiSi) and the Sn-destabilized Li hydride (LiSn). Each storage system demonstrates excellent volumetric capacity, achieving values between 100 and 250 kWhth/m3. The LiSi-based thermal energy storage systems can be integrated with steam and supercritical CO2 plants at a specific cost between 107 US$/kWhth and 109 US$/kWhth, with potential to achieve costs on the order of 74 US$/kWhth under enhanced configurations and scenarios. The LiAl-based storage system has the highest potential for large scale applications. The specific cost of the LiAl system, integrated in solar steam power plants, is equal to approximately 74 US$/kWhth, with potential to reach values on the order of 51 US$/kWhth under enhanced performance configurations and scenarios.


Author(s):  
Evgeniy Chupin ◽  
Konstantin Frolov ◽  
Maxim Korzhavin ◽  
Oleg Zhdaneev

AbstractEnergy storage systems are an important component of the energy transition, which is currently planned and launched in most of the developed and developing countries. The article outlines development of an electric energy storage system for drilling based on electric-chemical generators. Description and generalization are given for the main objectives for this system when used on drilling rigs isolated within a single pad, whether these are fed from diesel gensets, gas piston power plants, or 6–10 kV HV lines. The article studies power operating modes of drilling rigs, provides general conclusions and detailed results for one of more than fifty pads. Based on the research, a generic architecture of the energy storage module is developed, and an engineering prototype is built. The efficiency of using a hybrid energy accumulation design is proven; the design calls for joint use of Li-ion cells and supercapacitors, as well as three-level inverters, to control the storage system. The article reviews all possible options for connecting the system into a unified rig power circuit, and the optimum solution is substantiated. The research into the rig operating modes and engineering tests yielded a simplified mathematical model of an energy storage unit integrated into the power circuit of a drilling rig. The model is used to forecast the payoff period of the system for various utilization options and rig operating modes. The findings of this study can help to better understand which type of storage system is the most efficient for energy systems with temporary high load peaks, like drilling rigs.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3296
Author(s):  
Carlos García-Santacruz ◽  
Luis Galván ◽  
Juan M. Carrasco ◽  
Eduardo Galván

Energy storage systems are expected to play a fundamental part in the integration of increasing renewable energy sources into the electric system. They are already used in power plants for different purposes, such as absorbing the effect of intermittent energy sources or providing ancillary services. For this reason, it is imperative to research managing and sizing methods that make power plants with storage viable and profitable projects. In this paper, a managing method is presented, where particle swarm optimisation is used to reach maximum profits. This method is compared to expert systems, proving that the former achieves better results, while respecting similar rules. The paper further presents a sizing method which uses the previous one to make the power plant as profitable as possible. Finally, both methods are tested through simulations to show their potential.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1261
Author(s):  
Dina Emara ◽  
Mohamed Ezzat ◽  
Almoataz Y. Abdelaziz ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
...  

Recently, the penetration of energy storage systems and photovoltaics has been significantly expanded worldwide. In this regard, this paper presents the enhanced operation and control of DC microgrid systems, which are based on photovoltaic modules, battery storage systems, and DC load. DC–DC and DC–AC converters are coordinated and controlled to achieve DC voltage stability in the microgrid. To achieve such an ambitious target, the system is widely operated in two different modes: stand-alone and grid-connected modes. The novel control strategy enables maximum power generation from the photovoltaic system across different techniques for operating the microgrid. Six different cases are simulated and analyzed using the MATLAB/Simulink platform while varying irradiance levels and consequently varying photovoltaic generation. The proposed system achieves voltage and power stability at different load demands. It is illustrated that the grid-tied mode of operation regulated by voltage source converter control offers more stability than the islanded mode. In general, the proposed battery converter control introduces a stable operation and regulated DC voltage but with few voltage spikes. The merit of the integrated DC microgrid with batteries is to attain further flexibility and reliability through balancing power demand and generation. The simulation results also show the system can operate properly in normal or abnormal cases, thanks to the proposed control strategy, which can regulate the voltage stability of the DC bus in the microgrid with energy storage systems and photovoltaics.


Sign in / Sign up

Export Citation Format

Share Document